B. Skiera, Shunyao Yan, Johannes Daxenberger, Marcus Dombois, Iryna Gurevych
{"title":"Using Information-Seeking Argument Mining to Improve Service","authors":"B. Skiera, Shunyao Yan, Johannes Daxenberger, Marcus Dombois, Iryna Gurevych","doi":"10.1177/10946705221110845","DOIUrl":null,"url":null,"abstract":"If service providers can identify reasons users are in favor of or against a service, they have insightful information that can help them understand user behavior and what they need to do to change such behavior. This article argues that the novel text-mining technique referred to as information-seeking argument mining (IS-AM) can identify these reasons. The empirical study applies IS-AM to news articles and reviews about electric scooter-sharing systems (i.e., a service enabling the short-term rentals of electric motorized scooters). Its results point to IS-AM as a promising technique to improve service; the data enable the authors to identify 40 reasons to use or not use electric scooter-sharing systems, as well as their importance to users. Furthermore, the results show that news articles are better data sources than reviews because they are longer and contain more arguments and, thus, reasons.","PeriodicalId":48358,"journal":{"name":"Journal of Service Research","volume":"19 1","pages":"537 - 548"},"PeriodicalIF":9.8000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Service Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10946705221110845","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 1
Abstract
If service providers can identify reasons users are in favor of or against a service, they have insightful information that can help them understand user behavior and what they need to do to change such behavior. This article argues that the novel text-mining technique referred to as information-seeking argument mining (IS-AM) can identify these reasons. The empirical study applies IS-AM to news articles and reviews about electric scooter-sharing systems (i.e., a service enabling the short-term rentals of electric motorized scooters). Its results point to IS-AM as a promising technique to improve service; the data enable the authors to identify 40 reasons to use or not use electric scooter-sharing systems, as well as their importance to users. Furthermore, the results show that news articles are better data sources than reviews because they are longer and contain more arguments and, thus, reasons.
期刊介绍:
The Journal of Service Research (JSR) is recognized as the foremost service research journal globally. It is an indispensable resource for staying updated on the latest advancements in service research. With its accessible and applicable approach, JSR equips readers with the essential knowledge and strategies needed to navigate an increasingly service-oriented economy. Brimming with contributions from esteemed service professionals and scholars, JSR presents a wealth of articles that offer invaluable insights from academia and industry alike.