{"title":"Screening and bioconversion of glycyrrhizin of Glycyrrhiza glabra root extract to 18β-glycyrrhetinic acid by different microbial strains","authors":"Makhmur Ahmad, Jalaluddin, M. Ali, B. Panda","doi":"10.4103/2394-6555.180170","DOIUrl":null,"url":null,"abstract":"Objective: The objective of the present study is to perform screening of different microorganisms (7 bacteria and 14 fungi) for conversion of glycyrrhizin (GL) to 18β-glycyrrhetinic acid (GA). Penicillium chrysogenum produced the highest concentration of β-glucuronidase enzyme (61 U/mL) and produced GA of 52 μg/mL while E. coli produced the highest β-glucuronidase of 376 U/mL with GA concentration of 2.1 μg/mL. Materials and Methods: Submerged and solid state biotransformation of GL was carried out. To 9.0 mL of bacterial supernatant, 1.0 mL 0.2% w/v of aqueous Glycyrrhiza glabra root extract was added and incubated at 37°C for 24 h. β-glucuronidase activity was measured and high-performance liquid chromatography analysis was carried out. Results and Discussion: Induced-Escherichia coli produces 2.1 μg/mL of GA with an enzyme activity of 376 U/mL which shows that the enzyme has a potential biotransformation capability. Rhizopus oryzae and P. chrysogenum have the potential ability to biotransform GL to GA with 2.6 μg/mL and 61 μg/mL of GA with enzyme activity of 569 U/mL and 61 U/mL, respectively. Conclusions: G. glabra roots containing GL can be hydrolyzed by microbial β-glucuronidase enzyme under sub-merged fermentation (SmF). β-glucuronidase, an enzyme of E. coli, was found to be the best microbial source of enzyme which biocatalyzed the reaction than fungal strain under SmF.","PeriodicalId":11347,"journal":{"name":"Drug Development and Therapeutics","volume":"87 1","pages":"69 - 72"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2394-6555.180170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The objective of the present study is to perform screening of different microorganisms (7 bacteria and 14 fungi) for conversion of glycyrrhizin (GL) to 18β-glycyrrhetinic acid (GA). Penicillium chrysogenum produced the highest concentration of β-glucuronidase enzyme (61 U/mL) and produced GA of 52 μg/mL while E. coli produced the highest β-glucuronidase of 376 U/mL with GA concentration of 2.1 μg/mL. Materials and Methods: Submerged and solid state biotransformation of GL was carried out. To 9.0 mL of bacterial supernatant, 1.0 mL 0.2% w/v of aqueous Glycyrrhiza glabra root extract was added and incubated at 37°C for 24 h. β-glucuronidase activity was measured and high-performance liquid chromatography analysis was carried out. Results and Discussion: Induced-Escherichia coli produces 2.1 μg/mL of GA with an enzyme activity of 376 U/mL which shows that the enzyme has a potential biotransformation capability. Rhizopus oryzae and P. chrysogenum have the potential ability to biotransform GL to GA with 2.6 μg/mL and 61 μg/mL of GA with enzyme activity of 569 U/mL and 61 U/mL, respectively. Conclusions: G. glabra roots containing GL can be hydrolyzed by microbial β-glucuronidase enzyme under sub-merged fermentation (SmF). β-glucuronidase, an enzyme of E. coli, was found to be the best microbial source of enzyme which biocatalyzed the reaction than fungal strain under SmF.