Populating Local Minima in the Protein Conformational Space

Brian S. Olson, Amarda Shehu
{"title":"Populating Local Minima in the Protein Conformational Space","authors":"Brian S. Olson, Amarda Shehu","doi":"10.1109/BIBM.2011.22","DOIUrl":null,"url":null,"abstract":"Protein Modeling conceptualizes the protein energy landscape as a funnel with the native structure at the low-energy minimum. Current protein structure prediction algorithms seek the global minimum by searching for low-energy conformations in the hope that some of these reside in local minima near the native structure. The search techniques employed, however, fail to explicitly model these local minima. This work proposes a memetic algorithm which combines methods from evolutionary computation with cutting-edge structure prediction protocols. The Protein Local Optima Walk (PLOW) algorithm proposed here explores the space of local minima by explicitly projecting each move in the conformation space to a nearby local minimum. This allows PLOW to jump over local energy barriers and more effectively sample near-native conformations. Analysis across a broad range of proteins shows that PLOW outperforms an MMC-based method and compares favorably against other published abini to structure prediction algorithms.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"93 1","pages":"114-117"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Protein Modeling conceptualizes the protein energy landscape as a funnel with the native structure at the low-energy minimum. Current protein structure prediction algorithms seek the global minimum by searching for low-energy conformations in the hope that some of these reside in local minima near the native structure. The search techniques employed, however, fail to explicitly model these local minima. This work proposes a memetic algorithm which combines methods from evolutionary computation with cutting-edge structure prediction protocols. The Protein Local Optima Walk (PLOW) algorithm proposed here explores the space of local minima by explicitly projecting each move in the conformation space to a nearby local minimum. This allows PLOW to jump over local energy barriers and more effectively sample near-native conformations. Analysis across a broad range of proteins shows that PLOW outperforms an MMC-based method and compares favorably against other published abini to structure prediction algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
填充蛋白质构象空间的局部极小值
蛋白质建模将蛋白质能量景观概念化为具有低能量最小值的天然结构的漏斗。目前的蛋白质结构预测算法通过寻找低能构象来寻求全局最小值,并希望其中一些位于本地结构附近的局部最小值。然而,所采用的搜索技术不能明确地模拟这些局部最小值。本文提出了一种模因算法,该算法将进化计算方法与前沿结构预测协议相结合。本文提出的蛋白质局部最优行走(PLOW)算法通过显式地将构象空间中的每次移动映射到附近的局部最小值来探索局部最小值空间。这使得PLOW能够跳过局部能量障碍,更有效地采样接近原生的构象。对多种蛋白质的分析表明,PLOW优于基于mmc的方法,并且与其他已发表的abini - to - structure预测算法相比具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1