Nonsteady-state mathematical modelling of H2SO4-catalysed alkylation of isobutane with alkenes

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-01 DOI:10.2516/OGST/2021017
E. Ivashkina, E. Ivanchina, I. Dolganov, V. Chuzlov, A. Kotelnikov, I. Dolganova, R. Khakimov
{"title":"Nonsteady-state mathematical modelling of H2SO4-catalysed alkylation of isobutane with alkenes","authors":"E. Ivashkina, E. Ivanchina, I. Dolganov, V. Chuzlov, A. Kotelnikov, I. Dolganova, R. Khakimov","doi":"10.2516/OGST/2021017","DOIUrl":null,"url":null,"abstract":"H2SO4-catalysed isobutane alkylation with alkenes is an important industrial process used to obtain high-octane alkylate. In this process, the concentration of H2SO4 is one of the main parameters. For alkylation, sulphuric acid containing 88%–98% monohydrate is typically used. However, only a H2SO4 concentration of 95%–96% enables alkylate with the maximum octane number to be obtained. Changes in H2SO4 concentration due to decontamination are the main cause of process variations. Therefore, it is necessary to maintain the reactor acid concentration at a constant level by regulating the supply of fresh catalyst and pumping out any spent acid. The main reasons for the decrease in the H2SO4 concentration are accumulation of high-molecular organic compounds and dilution by water. One way to improve and predict unsteady alkylation processes is to develop a mathematical model that considers catalyst deactivation. In the present work, the formation reactions of undesired substances were used in the description of the alkylation process, indicating the sensitivity of the prediction to H2SO4 activity variations. This was used for calculation the optimal technological modes ensuring the maximum selectivity and stability of the chemical–technological system under varying hydrocarbon feedstock compositions.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2021017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

H2SO4-catalysed isobutane alkylation with alkenes is an important industrial process used to obtain high-octane alkylate. In this process, the concentration of H2SO4 is one of the main parameters. For alkylation, sulphuric acid containing 88%–98% monohydrate is typically used. However, only a H2SO4 concentration of 95%–96% enables alkylate with the maximum octane number to be obtained. Changes in H2SO4 concentration due to decontamination are the main cause of process variations. Therefore, it is necessary to maintain the reactor acid concentration at a constant level by regulating the supply of fresh catalyst and pumping out any spent acid. The main reasons for the decrease in the H2SO4 concentration are accumulation of high-molecular organic compounds and dilution by water. One way to improve and predict unsteady alkylation processes is to develop a mathematical model that considers catalyst deactivation. In the present work, the formation reactions of undesired substances were used in the description of the alkylation process, indicating the sensitivity of the prediction to H2SO4 activity variations. This was used for calculation the optimal technological modes ensuring the maximum selectivity and stability of the chemical–technological system under varying hydrocarbon feedstock compositions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫酸催化异丁烷与烯烃烷基化反应的非稳态数学模型
硫酸催化异丁烷与烯烃的烷基化反应是制备高辛烷烷烃的重要工业工艺。在此过程中,H2SO4的浓度是主要参数之一。对于烷基化,通常使用含有88%-98%一水化合物的硫酸。然而,只有当H2SO4浓度为95% ~ 96%时,才能得到辛烷值最高的烷基酸盐。净化引起的H2SO4浓度变化是工艺变化的主要原因。因此,有必要通过调节新鲜催化剂的供应和泵出任何废酸来维持反应器酸浓度在恒定水平。H2SO4浓度降低的主要原因是高分子有机物的积累和水的稀释。改进和预测不稳定烷基化过程的一种方法是建立考虑催化剂失活的数学模型。在本工作中,不需要的物质的形成反应被用于描述烷基化过程,表明预测对H2SO4活性变化的敏感性。利用该模型计算了在不同烃原料组成下保证化学工艺系统最大选择性和稳定性的最佳工艺模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1