Omega-3 fatty acid nanocarriers: Characterization and potential applications

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Colloid & Interface Science Pub Date : 2023-10-01 DOI:10.1016/j.cocis.2023.101728
Anan Yaghmur , Sana Ghayas , Habibullah Jan , Gokce Dicle Kalaycioglu , S. Moein Moghimi
{"title":"Omega-3 fatty acid nanocarriers: Characterization and potential applications","authors":"Anan Yaghmur ,&nbsp;Sana Ghayas ,&nbsp;Habibullah Jan ,&nbsp;Gokce Dicle Kalaycioglu ,&nbsp;S. Moein Moghimi","doi":"10.1016/j.cocis.2023.101728","DOIUrl":null,"url":null,"abstract":"<div><p>Lyotropic non-lamellar liquid crystalline (LLC) nano-self-assemblies (including cubosomes and hexosomes) are attractive versatile platforms for the encapsulation and delivery of drugs and nutritional molecules. This is due to their unique structural features and architectural arrangements that afford loading of small molecules and macromolecules having different physicochemical properties with high efficiency. Considering the reported health-promoting effects of long-chain omega-3 polyunsaturated fatty acids (<em>ω</em>-3 PUFAs) and their precursors <em>ω</em>-3 PUFA monoacylglycerols; here, we focus on physicochemical and biological properties of a new family of non-lamellar LLC nanoparticles assembled either from binary mixtures of phosphatidylglycerol and three types of <em>ω</em>-3 PUFAs, or from single <em>ω</em>-3 PUFA monoacylglycerols. We discuss recent progress in understanding their complexity, pH sensitivity, and structural tunability, as well as highlight their potential applications in health and medicine.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359029423000535/pdfft?md5=fa4e868d4a6aed6c5379ce7f88575b10&pid=1-s2.0-S1359029423000535-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000535","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lyotropic non-lamellar liquid crystalline (LLC) nano-self-assemblies (including cubosomes and hexosomes) are attractive versatile platforms for the encapsulation and delivery of drugs and nutritional molecules. This is due to their unique structural features and architectural arrangements that afford loading of small molecules and macromolecules having different physicochemical properties with high efficiency. Considering the reported health-promoting effects of long-chain omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and their precursors ω-3 PUFA monoacylglycerols; here, we focus on physicochemical and biological properties of a new family of non-lamellar LLC nanoparticles assembled either from binary mixtures of phosphatidylglycerol and three types of ω-3 PUFAs, or from single ω-3 PUFA monoacylglycerols. We discuss recent progress in understanding their complexity, pH sensitivity, and structural tunability, as well as highlight their potential applications in health and medicine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Omega-3脂肪酸纳米载体:表征和潜在的应用
溶性非层状液晶(LLC)纳米自组装体(包括立方体体和自旋体)是药物和营养分子封装和输送的有吸引力的多功能平台。这是由于它们独特的结构特征和结构安排,可以高效地装载具有不同物理化学性质的小分子和大分子。考虑到已报道的长链ω-3多不饱和脂肪酸(ω-3 PUFAs)及其前体ω-3 PUFA单酰基甘油的健康促进作用;在这里,我们重点研究了一个新的非层状LLC纳米颗粒家族的物理化学和生物学特性,这些纳米颗粒要么是由磷脂酰甘油和三种ω-3 PUFA的二元混合物组装而成,要么是由单一ω-3 PUFA单酰基甘油组装而成。我们讨论了在理解它们的复杂性、pH敏感性和结构可调性方面的最新进展,并强调了它们在健康和医学方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
期刊最新文献
A critical examination of the physics behind the formation of particle-laden fluid interfaces Protorheology in practice: Avoiding misinterpretation Rheological effects of rough colloids at fluid interfaces: An overview Non-fused and fused ring non-fullerene acceptors The rise and potential of top interface modification in tin halide perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1