Wavelet based-analysis of alpha rhythm on EEG signal

Fera Putrì Ayu Lestari, Evi Septiana Pane, Y. Suprapto, M. Purnomo
{"title":"Wavelet based-analysis of alpha rhythm on EEG signal","authors":"Fera Putrì Ayu Lestari, Evi Septiana Pane, Y. Suprapto, M. Purnomo","doi":"10.1109/ICOIACT.2018.8350673","DOIUrl":null,"url":null,"abstract":"One of the major frequency rhythm in EEG signal is called alpha rhythm, that indicate relax condition, calm, and awake without much concentration. In this paper we analyzing alpha rhythm using continuous wavelet transform (CWT) to explore the feature of relax condition. We do some scenario in analyzing alpha rhythm, normalizing and segmenting the data. EEG dataset was provided by DEAP. We sort the relax data (labelled with high valence and low arousal by participants) among all data to be observed. First, EEG data are normalized then filtered using band pass filter to get the specific alpha frequency (8–13Hz). Then, we use CWT to transform the signals into time-frequency domain. Entropy and energy of the coefficient wavelet transform are calculate as feature for clustering. From the result, normalized data gave different values. Besides changes the real magnitude information, it give lower accuracy 51.7% than not normalized data 67.2%. We conclude that normalizing data is not necessary especially on subject independent analysis. In additional, clustering result of all data compared with segmented data aren't gave significant differences. Finally, using CWT for feature extraction gives good enough results (67.2%).","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"57 1","pages":"719-723"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

One of the major frequency rhythm in EEG signal is called alpha rhythm, that indicate relax condition, calm, and awake without much concentration. In this paper we analyzing alpha rhythm using continuous wavelet transform (CWT) to explore the feature of relax condition. We do some scenario in analyzing alpha rhythm, normalizing and segmenting the data. EEG dataset was provided by DEAP. We sort the relax data (labelled with high valence and low arousal by participants) among all data to be observed. First, EEG data are normalized then filtered using band pass filter to get the specific alpha frequency (8–13Hz). Then, we use CWT to transform the signals into time-frequency domain. Entropy and energy of the coefficient wavelet transform are calculate as feature for clustering. From the result, normalized data gave different values. Besides changes the real magnitude information, it give lower accuracy 51.7% than not normalized data 67.2%. We conclude that normalizing data is not necessary especially on subject independent analysis. In additional, clustering result of all data compared with segmented data aren't gave significant differences. Finally, using CWT for feature extraction gives good enough results (67.2%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的脑电信号α节律分析
脑电图信号中一个主要的频率节律被称为α节律,它表示放松状态、平静状态和清醒状态。本文利用连续小波变换(CWT)对α节奏进行分析,探讨其松弛条件的特征。我们在分析alpha节奏、规范化和分割数据方面做了一些场景。EEG数据集由DEAP提供。我们将放松数据(参与者标记为高效和低唤醒)在所有观察数据中进行分类。首先对脑电数据进行归一化处理,然后用带通滤波器进行滤波,得到具体的α频率(8-13Hz)。然后利用CWT将信号变换到时频域。计算系数小波变换的熵和能量作为聚类的特征。从结果来看,规范化的数据给出了不同的值。除改变了真实震级信息外,其精度比未归一化数据的精度(67.2%)低51.7%。我们得出结论,规范化数据是没有必要的,特别是在主题独立分析。此外,所有数据的聚类结果与分段数据相比没有显著差异。最后,使用CWT进行特征提取,得到了足够好的结果(67.2%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Normalization and Database Design for Joglosemar Tourism Management of fault tolerance and traffic congestion in cloud data center Development of smart public transportation system in Jakarta city based on integrated IoT platform Improving the quality of enterprise IT goals using COBIT 5 prioritization approach Data mining technique with cluster anaysis use K-means algorithm for LQ45 index on Indonesia stock exchange
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1