Signal detection and discrimination for medical devices using windowed state space filters

R. Wildhaber, Nour Zalmai, M. Jacomet, Hans-Andrea Loeliger
{"title":"Signal detection and discrimination for medical devices using windowed state space filters","authors":"R. Wildhaber, Nour Zalmai, M. Jacomet, Hans-Andrea Loeliger","doi":"10.2316/P.2017.852-020","DOIUrl":null,"url":null,"abstract":"We introduce a model-based approach for computationally efficient signal detection and discrimination, which is relevant for biological signals. Due to its low computational complexity and low memory need, this approach is well-suited for low power designs, as required for medical devices and implants. We use linear state space models to gain recursive, efficient computation rules and obtain the model parameters by minimizing the squared error on discrete-time observations. Furthermore we combine multiple models of different time-scales to match superpositions of signals of variable length. To give immediate access to our method, we highlight the use in several practical examples on standard and on esophageal ECG signals. This method was adapted and improved as part of a research and development project for medical devices.","PeriodicalId":6635,"journal":{"name":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","volume":"38 1","pages":"125-133"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/P.2017.852-020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a model-based approach for computationally efficient signal detection and discrimination, which is relevant for biological signals. Due to its low computational complexity and low memory need, this approach is well-suited for low power designs, as required for medical devices and implants. We use linear state space models to gain recursive, efficient computation rules and obtain the model parameters by minimizing the squared error on discrete-time observations. Furthermore we combine multiple models of different time-scales to match superpositions of signals of variable length. To give immediate access to our method, we highlight the use in several practical examples on standard and on esophageal ECG signals. This method was adapted and improved as part of a research and development project for medical devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于窗态空间滤波器的医疗设备信号检测与识别
我们介绍了一种基于模型的方法,用于计算高效的信号检测和识别,这与生物信号有关。由于其低计算复杂度和低内存需求,这种方法非常适合低功耗设计,如医疗设备和植入物所需要的。我们使用线性状态空间模型来获得递归、高效的计算规则,并通过最小化离散时间观测值的平方误差来获得模型参数。此外,我们结合多个不同时间尺度的模型来匹配变长度信号的叠加。为了让大家立即了解我们的方法,我们强调了在标准和食道心电图信号的几个实际例子中的应用。作为医疗设备研发项目的一部分,对该方法进行了调整和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A physical simulation to investigate the effect of anorectal angle on continence Effect of anatomical landmark placement variation on the angular parameters of the lower extremities Balancing strategy differences in bilateral knee osteoarthritis patients Controlled permeation of lidocaine hydrochloride using a smart drug delivery system Comparison of single ended and differential signalling for wired biomedical implants using SPI communication with Reed Solomon Error Correction codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1