{"title":"A New Mode Stirrer Design for the Reverberation Chamber","authors":"Jiazhi Tang, Furong Li, Junhao Zheng, Xiaoming Chen, Yingsong Li, Juan Chen","doi":"10.47037/2021.aces.j.36099","DOIUrl":null,"url":null,"abstract":"─ In this paper, a mode stirrer composed of random positioned metal plates is proposed for reverberation chamber. The designing procedure of the mode stirrer is presented. The designed stirrer is compared with the common Z-shaped stirrer in both simulation and measurement. It is shown that in general the proposed stirrer outperforms the common Z-shaped stirrer with the same sweeping volume. Nevertheless, the measurement results show that the performance improvement of the designed stirrer becomes insignificant at higher frequencies with additional platform stirring. Albeit the difference, the stirring improvement of the designed stirrer is clearly demonstrated at low frequencies, which is more important due to the inherent low mode density at low frequency. Index Terms ─ Independent sample number, measurement uncertainty, mode stirrer, reverberation chamber.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.36099","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
─ In this paper, a mode stirrer composed of random positioned metal plates is proposed for reverberation chamber. The designing procedure of the mode stirrer is presented. The designed stirrer is compared with the common Z-shaped stirrer in both simulation and measurement. It is shown that in general the proposed stirrer outperforms the common Z-shaped stirrer with the same sweeping volume. Nevertheless, the measurement results show that the performance improvement of the designed stirrer becomes insignificant at higher frequencies with additional platform stirring. Albeit the difference, the stirring improvement of the designed stirrer is clearly demonstrated at low frequencies, which is more important due to the inherent low mode density at low frequency. Index Terms ─ Independent sample number, measurement uncertainty, mode stirrer, reverberation chamber.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.