Yaqi Wu, Yongsen Cai, Jinpeng Hao, G. Geng, Yong Zhang
{"title":"Co47.5Fe28.•5Ni19Si3.3Al1.7 High-entropy Skeletons Fabricated by Selective Laser Melting and Properties tuned by pressure infiltration of Al","authors":"Yaqi Wu, Yongsen Cai, Jinpeng Hao, G. Geng, Yong Zhang","doi":"10.33142/rams.v4i2.8467","DOIUrl":null,"url":null,"abstract":"High saturation magnetization and low coercivity are required for soft magnetic materials. This study investigated the Co47.5Fe28.5Ni19Si3.3Al1.7 high-entropy soft magnetic skeleton was prepared by selective laser melting. Then Al was pressure infiltrated into skeletons to obtain a dense composite material. The high-entropy composite materials possessed favorable compressive ductility and moderate soft magnetic properties. The high-entropy composite materials were obtained with Ms being 97.1 emu/g, 79.8 emu/g, 33 emu/g and possessing 19 Oe, 15.8Oe and 17Oe of Hc, respectively. However, the magnetostriction coefficient remains low level, about 5ppm. These reported properties are attributed to the special structure of the material studied in present experiment. Nevertheless, a novel strategy of structural designing was proposed in this paper.","PeriodicalId":21005,"journal":{"name":"Research and Application of Materials Science","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Application of Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33142/rams.v4i2.8467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High saturation magnetization and low coercivity are required for soft magnetic materials. This study investigated the Co47.5Fe28.5Ni19Si3.3Al1.7 high-entropy soft magnetic skeleton was prepared by selective laser melting. Then Al was pressure infiltrated into skeletons to obtain a dense composite material. The high-entropy composite materials possessed favorable compressive ductility and moderate soft magnetic properties. The high-entropy composite materials were obtained with Ms being 97.1 emu/g, 79.8 emu/g, 33 emu/g and possessing 19 Oe, 15.8Oe and 17Oe of Hc, respectively. However, the magnetostriction coefficient remains low level, about 5ppm. These reported properties are attributed to the special structure of the material studied in present experiment. Nevertheless, a novel strategy of structural designing was proposed in this paper.