Investigation of Temperature Variation on a HSO Ferroelectric FDSOI NCFET

R. Shaik, K. P. Pradhan
{"title":"Investigation of Temperature Variation on a HSO Ferroelectric FDSOI NCFET","authors":"R. Shaik, K. P. Pradhan","doi":"10.1109/NMDC50713.2021.9677472","DOIUrl":null,"url":null,"abstract":"In this work, temperature effect on MFMIS type FDSOI NCFET is investigated considering a well known thin film ferroelectric material HSO (Silicon doped HfO2). The current investigations are performed in a TCAD environment where the underlying gate charge is obtained using TCAD simulation to computing ferro voltage across the HSO ferroelectric capacitor to find the total gate voltage in the gate-stack. The extracted values are then investigated for a non-hysteric operation while varying ferroelectric thickness $(\\mathrm{T}_{F})$ to predict the optimum $\\mathrm{T}_{F}$ of HSO ferroelectric. The optimum HSO type MFMIS NCFET has been subjected to variation in temperature to predict the electrical performance of the device under harsh environments. It is observed that the HSO type MFMIS NCFET predicts improvement in sub-threshold slope (SS) and amplification factor $(\\mathrm{A}_{V})$ at operating temperatures reduced significantly lower than the ferroelectric Curie temperature whereas the device tends to show slight deterioration in SS and $\\mathrm{A}_{V}$ when the operating temperature approaches the Curie temperature.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"72 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC50713.2021.9677472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, temperature effect on MFMIS type FDSOI NCFET is investigated considering a well known thin film ferroelectric material HSO (Silicon doped HfO2). The current investigations are performed in a TCAD environment where the underlying gate charge is obtained using TCAD simulation to computing ferro voltage across the HSO ferroelectric capacitor to find the total gate voltage in the gate-stack. The extracted values are then investigated for a non-hysteric operation while varying ferroelectric thickness $(\mathrm{T}_{F})$ to predict the optimum $\mathrm{T}_{F}$ of HSO ferroelectric. The optimum HSO type MFMIS NCFET has been subjected to variation in temperature to predict the electrical performance of the device under harsh environments. It is observed that the HSO type MFMIS NCFET predicts improvement in sub-threshold slope (SS) and amplification factor $(\mathrm{A}_{V})$ at operating temperatures reduced significantly lower than the ferroelectric Curie temperature whereas the device tends to show slight deterioration in SS and $\mathrm{A}_{V}$ when the operating temperature approaches the Curie temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HSO铁电FDSOI NCFET的温度变化研究
在这项工作中,考虑到众所周知的薄膜铁电材料HSO(硅掺杂HfO2),研究了温度对MFMIS型FDSOI NCFET的影响。目前的研究是在TCAD环境中进行的,通过TCAD模拟计算HSO铁电电容器上的铁电压来获得潜在的栅极电荷,从而找到栅极堆栈中的总栅极电压。然后在改变铁电厚度$(\ mathm {T}_{F})$的情况下,对提取的值进行非滞后操作,以预测HSO铁电的最佳$\ mathm {T}_{F}$。最佳的HSO型MFMIS NCFET已经受到温度变化的影响,以预测设备在恶劣环境下的电气性能。观察到HSO型MFMIS NCFET在明显低于铁电居里温度的工作温度下,亚阈值斜率(SS)和放大因子$(\ mathm {A}_{V})$有改善,而当工作温度接近居里温度时,器件的SS和$\ mathm {A}_{V}$有轻微的恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphology control and optimization of nano-MgO-Mg(OH)2 composite via vapor steaming for effective CO2 capture Effect of Surface Charge Model in the Characterization of Two-dimensional Hydrogenated Nanocrystalline-diamond Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with Device Simulation Making ultra-active antimicrobial copper possible through surface area enhancement A Sensitive Electrochemical Biosensors Based on Glassy Carbon Electrodes Integrated with Smartphone for Prostate Cancer Detection Quantum Transport in Conductive Bacterial Nanowires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1