Phonon instabilities in a metal on the bain FCC–BCC transformation path

A. R. Kuznetsov, S. Starikov, V. Sagaradze
{"title":"Phonon instabilities in a metal on the bain FCC–BCC transformation path","authors":"A. R. Kuznetsov, S. Starikov, V. Sagaradze","doi":"10.17804/2410-9908.2022.6.086-094","DOIUrl":null,"url":null,"abstract":"In this paper, the energy of the Bain path in Al and the instability of phonons during uniaxial compression deformation along <001> are studied ab initio. It is shown that, at a strain of about 15%, dynamic loss of structure stability is observed due to short-wavelength phonons, which thus determine the theoretical strength of Al. Deformation causes shifts along the {111} planes of the initial fcc cell, leading to the formation of stacking faults. A similar formation of stacking faults was observed in [1] in the framework of simulation of compression along the <001> Ni3Al nanoparticle (L12 superstructure based on the fcc structure). The results obtained can be applied to situations in the experiment, when small defect-free regions are deformed, for example, as in nanostructured materials and during nanoindentation.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2022.6.086-094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the energy of the Bain path in Al and the instability of phonons during uniaxial compression deformation along <001> are studied ab initio. It is shown that, at a strain of about 15%, dynamic loss of structure stability is observed due to short-wavelength phonons, which thus determine the theoretical strength of Al. Deformation causes shifts along the {111} planes of the initial fcc cell, leading to the formation of stacking faults. A similar formation of stacking faults was observed in [1] in the framework of simulation of compression along the <001> Ni3Al nanoparticle (L12 superstructure based on the fcc structure). The results obtained can be applied to situations in the experiment, when small defect-free regions are deformed, for example, as in nanostructured materials and during nanoindentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝恩FCC-BCC转换路径上金属中的声子不稳定性
本文从头开始研究了铝中贝恩路径的能量和声子沿单轴压缩变形时的不稳定性。结果表明,在约15%的应变下,短波声子导致结构稳定性的动态损失,从而决定了Al的理论强度。变形导致初始fcc胞沿{111}面的位移,导致层错的形成。在模拟Ni3Al纳米颗粒(基于fcc结构的L12超结构)沿压缩的框架下,[1]中也观察到类似的层错形成。得到的结果可以应用于实验中的情况,当小的无缺陷区域变形时,例如,在纳米结构材料和纳米压痕过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The technology of arc welding of dissimilar steels Experience in the application of simulation of hot forging in production conditions at the KUMW JSC Finite element simulation of frictional surface hardening by a rotary tool during the hardening of the faces of fixation holes for washers Exact solutions for the description of nonuniform unidirectional flows of magnetic fluids in the Lin–Sidorov–Aristov class A model of describing creep strains and porosity evolution for a hollow cylinder affected by internal gas pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1