Pub Date : 2023-10-01DOI: 10.17804/2410-9908.2023.5.039-052
L. Goruleva, E. Prosviryakov
The paper considers the exact integration of magnetic hydrodynamic equations for describing nonuniform unidirectional flows of viscous incompressible fluids. The construction of an exact solution is based on the well-known representation of hydrodynamic fields as the Lin–Sidorov–Aristov class. The 3d magnetic field is described by linear forms with respect to two spatial coordinates (longitudinal, or horizontal). The coefficients of the linear forms depend on the third coordinate and time. In view of the incompressibility condition, the 1D velocity field depends on two coordinates and time. The pressure is shown to be determined by a quadratic form with constant coefficients. These coefficients are determined by pressure distribution on the known (free) boundary. The exact solution is illustrated by the integration of non-1D hydrodynamic fields in the case of the steady motion of a conducting viscous incompressible fluid. This solution is polynomial, and it will be useful for the formulation of new problems of hydrodynamic stability.
{"title":"Exact solutions for the description of nonuniform unidirectional flows of magnetic fluids in the Lin–Sidorov–Aristov class","authors":"L. Goruleva, E. Prosviryakov","doi":"10.17804/2410-9908.2023.5.039-052","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.5.039-052","url":null,"abstract":"The paper considers the exact integration of magnetic hydrodynamic equations for describing nonuniform unidirectional flows of viscous incompressible fluids. The construction of an exact solution is based on the well-known representation of hydrodynamic fields as the Lin–Sidorov–Aristov class. The 3d magnetic field is described by linear forms with respect to two spatial coordinates (longitudinal, or horizontal). The coefficients of the linear forms depend on the third coordinate and time. In view of the incompressibility condition, the 1D velocity field depends on two coordinates and time. The pressure is shown to be determined by a quadratic form with constant coefficients. These coefficients are determined by pressure distribution on the known (free) boundary. The exact solution is illustrated by the integration of non-1D hydrodynamic fields in the case of the steady motion of a conducting viscous incompressible fluid. This solution is polynomial, and it will be useful for the formulation of new problems of hydrodynamic stability.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139329771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.17804/2410-9908.2023.5.053-068
G. Mukanov, V. P. Kuznetsov, V. P. Shveikin, I. Kamantsev
The paper discusses a methodology for simulating friction stir processing in order to determine the process parameters and to provide surface hardening for flanges with a cavity. In accordance with the developed methodology presented by the results of literature analysis, it describes a computational computer model developed in Ansys Mechanical and based on the finite element method. The thermophysical properties of the material under study and the tool material, which are taken into account in the FEM simulation of the processes, are presented as dependent on temperature. By comparison with experimental research, the simulation results are verified in terms of a number of parameters, such as the depth of the hardened layer and the diameter of the surface area of the faces of holes for bolted joints. The results of measuring the microhardness of the hardened layers of the AISI 420 steel are presented, and their dependence on the depth of the hardened layer is determined. Numerical simulation is used to compute the values of the geometrical parameters of the areas subjected to surface hardening by friction stir processing with the variation of the process parameter, namely tool rotation speed, the force acting along the normal to the surface being processed, and the friction coefficient. The numerical simulation gives results on the thermal state of the specimen, particularly, maximum temperatures in the contact zone, as well as temperature and time dependences.
{"title":"Finite element simulation of frictional surface hardening by a rotary tool during the hardening of the faces of fixation holes for washers","authors":"G. Mukanov, V. P. Kuznetsov, V. P. Shveikin, I. Kamantsev","doi":"10.17804/2410-9908.2023.5.053-068","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.5.053-068","url":null,"abstract":"The paper discusses a methodology for simulating friction stir processing in order to determine the process parameters and to provide surface hardening for flanges with a cavity. In accordance with the developed methodology presented by the results of literature analysis, it describes a computational computer model developed in Ansys Mechanical and based on the finite element method. The thermophysical properties of the material under study and the tool material, which are taken into account in the FEM simulation of the processes, are presented as dependent on temperature. By comparison with experimental research, the simulation results are verified in terms of a number of parameters, such as the depth of the hardened layer and the diameter of the surface area of the faces of holes for bolted joints. The results of measuring the microhardness of the hardened layers of the AISI 420 steel are presented, and their dependence on the depth of the hardened layer is determined. Numerical simulation is used to compute the values of the geometrical parameters of the areas subjected to surface hardening by friction stir processing with the variation of the process parameter, namely tool rotation speed, the force acting along the normal to the surface being processed, and the friction coefficient. The numerical simulation gives results on the thermal state of the specimen, particularly, maximum temperatures in the contact zone, as well as temperature and time dependences.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139329217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.17804/2410-9908.2023.5.006-014
V. V. Nazarov
Two plane-strain states of two identical hollow cylinders are considered, where one is made of a material with porosity evolution and the other is made of an incompressible material. For each hollow cylinder, the process of inflation begins from an undeformed state and ends as soon as the external boundary radius reaches a certain set value. In the assumption that the porosity increases and reaches its highest value at the outer boundary radius, the two hollow cylinders are compared in terms of their strains and stresses.
{"title":"A model of describing creep strains and porosity evolution for a hollow cylinder affected by internal gas pressure","authors":"V. V. Nazarov","doi":"10.17804/2410-9908.2023.5.006-014","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.5.006-014","url":null,"abstract":"Two plane-strain states of two identical hollow cylinders are considered, where one is made of a material with porosity evolution and the other is made of an incompressible material. For each hollow cylinder, the process of inflation begins from an undeformed state and ends as soon as the external boundary radius reaches a certain set value. In the assumption that the porosity increases and reaches its highest value at the outer boundary radius, the two hollow cylinders are compared in terms of their strains and stresses.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139330320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.17804/2410-9908.2023.5.015-030
N. B. Pugacheva, D. Vichuzhanin, Т. М. Bykova, I. Kamantsev
The paper studies changes in the structural state of a Ni–Fe–Cr–Ti–B–C composite after hot plastic deformation. The matrix of the composite consists of a mechanical mixture of two solid solutions: austenite and ferrite. Titanium carbide and diboride particles resulting from self-propagating high-temperature synthesis (SHS) are the strengthening phases. Additional strengthening is provided by carbide Cr23C6 and intermetallic Ni3Ti particles formed in austenite during cooling. The constituent with a ferrite matrix, which is a mixture of α-(Cr,Fe) + TiB2 + TiC + Cr23C6, is shown to have the highest ductility. The strongest constituent of the composite is represented by regions with an austenitic matrix and the most abundant TiB2 particles. These regions are characterized by the highest hardness, elastic modulus, elastic recovery Re and wear resistance ratio HIT/E. The hardness of the composite is 58 HRC. For plastic deformation of the composite, it is proposed to perform hot rolling at a heating temperature of 1000 °C under all-round compression. To do this, a composite specimen is pressed into a 10 mm steel shell, with 6 mm steel plates welded on top and from below. True plastic strain ε = 0.6 is achieved under these conditions. EBSD analysis testifies that the deformation is implemented due to dynamic polygonization and recrystallization of the austenitic and ferritic grains of the composite matrix. Dynamic recrystallization prevails in the austenitic grains, whereas dynamic polygonization predominates in the ferritic ones.
{"title":"Studying the plastic deformability of a Ni–Fe–Cr–Ti–B–C composite","authors":"N. B. Pugacheva, D. Vichuzhanin, Т. М. Bykova, I. Kamantsev","doi":"10.17804/2410-9908.2023.5.015-030","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.5.015-030","url":null,"abstract":"The paper studies changes in the structural state of a Ni–Fe–Cr–Ti–B–C composite after hot plastic deformation. The matrix of the composite consists of a mechanical mixture of two solid solutions: austenite and ferrite. Titanium carbide and diboride particles resulting from self-propagating high-temperature synthesis (SHS) are the strengthening phases. Additional strengthening is provided by carbide Cr23C6 and intermetallic Ni3Ti particles formed in austenite during cooling. The constituent with a ferrite matrix, which is a mixture of α-(Cr,Fe) + TiB2 + TiC + Cr23C6, is shown to have the highest ductility. The strongest constituent of the composite is represented by regions with an austenitic matrix and the most abundant TiB2 particles. These regions are characterized by the highest hardness, elastic modulus, elastic recovery Re and wear resistance ratio HIT/E. The hardness of the composite is 58 HRC. For plastic deformation of the composite, it is proposed to perform hot rolling at a heating temperature of 1000 °C under all-round compression. To do this, a composite specimen is pressed into a 10 mm steel shell, with 6 mm steel plates welded on top and from below. True plastic strain ε = 0.6 is achieved under these conditions. EBSD analysis testifies that the deformation is implemented due to dynamic polygonization and recrystallization of the austenitic and ferritic grains of the composite matrix. Dynamic recrystallization prevails in the austenitic grains, whereas dynamic polygonization predominates in the ferritic ones.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139331014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.17804/2410-9908.2023.5.069-082
Yu. V. Zamaraeva, L. I. Knysh, E. M. Gaisin
Software for computer simulation of metal forging processes is a reliable tool for designing dies and developing technological processes, which allows one to avoid defects and predict product quality. The paper describes the experience of the KUMW JSC in simulating with the Deform and QForm software packages. The distinctive advantages of the QForm domestic software are exemplified by the forging of a roller disk. Proceeding from the described advantages, the KUMW JSC has selected QForm as effective software to solve the problems of die forging. The paper provides examples of applying this software. QForm is used to evaluate die filling in the forging of an odd-shaped part. Significant under-forming of the part was identified, and the technology was optimized in order to eliminate them. Additionally, by using this software, the shape and weight of a blank for forging a landing gear leg were optimized, and this has resulted in a 15% increase in geometric yield. After only one die-forged item code was modeled and the durability of the tooling was evaluated from stress intensity and displacement, the tooling material was replaced, the critical zone radius was locally increased, and the method for manufacturing die tooling was altered. This increased tool durability by 28%. The presence of the Hartfield postprocessor subroutine in QForm has made it possible to predict the zones of the occurrence of forging defects during the processing of the odd-shaped part and to correct the production scheme in good time. Each simulation example is supported by industrial experiment.
{"title":"Experience in the application of simulation of hot forging in production conditions at the KUMW JSC","authors":"Yu. V. Zamaraeva, L. I. Knysh, E. M. Gaisin","doi":"10.17804/2410-9908.2023.5.069-082","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.5.069-082","url":null,"abstract":"Software for computer simulation of metal forging processes is a reliable tool for designing dies and developing technological processes, which allows one to avoid defects and predict product quality. The paper describes the experience of the KUMW JSC in simulating with the Deform and QForm software packages. The distinctive advantages of the QForm domestic software are exemplified by the forging of a roller disk. Proceeding from the described advantages, the KUMW JSC has selected QForm as effective software to solve the problems of die forging. The paper provides examples of applying this software. QForm is used to evaluate die filling in the forging of an odd-shaped part. Significant under-forming of the part was identified, and the technology was optimized in order to eliminate them. Additionally, by using this software, the shape and weight of a blank for forging a landing gear leg were optimized, and this has resulted in a 15% increase in geometric yield. After only one die-forged item code was modeled and the durability of the tooling was evaluated from stress intensity and displacement, the tooling material was replaced, the critical zone radius was locally increased, and the method for manufacturing die tooling was altered. This increased tool durability by 28%. The presence of the Hartfield postprocessor subroutine in QForm has made it possible to predict the zones of the occurrence of forging defects during the processing of the odd-shaped part and to correct the production scheme in good time. Each simulation example is supported by industrial experiment.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139325980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.17804/2410-9908.2023.5.031-038
A. V. Berezovsky, E. Votinova, A. S. Smolentsev
Arc narrow gap welding of the 35L carbon cast steel (cast carbon steel J03502, grade 1) and the 110G13L high-manganese steel (austenitic manganese steel, ASTM A128) is performed using chromium-nickel-manganese wires in a shielding gas mixture (GOST R ISO 14175–2010 – M21). The welded samples are examined by different methods including optical metallography, hardness measurement, and mechanical tests. The weld metal structure along the weld height in the welded samples proves to be fairly uniform, namely austenite with ferrite inclusions. The experiment results show that the mechanical properties of the weld metal correspond to the intermediate values for the joined steels. The developed technology has made it possible to produce a welded joint with high mechanical properties and a ductile structure.
在保护气体混合物(GOST R ISO 14175-2010 - M21)中使用铬镍锰焊丝对 35L 碳铸钢(碳铸钢 J03502,1 级)和 110G13L 高锰钢(奥氏体锰钢,ASTM A128)进行了电弧窄间隙焊接。焊接样品采用不同的方法进行检测,包括光学金相分析、硬度测量和机械测试。事实证明,焊接样品沿焊缝高度的焊缝金属结构相当均匀,即带有铁素体夹杂物的奥氏体。实验结果表明,焊接金属的机械性能与连接钢材的中间值一致。所开发的技术使生产具有高机械性能和韧性结构的焊接接头成为可能。
{"title":"The technology of arc welding of dissimilar steels","authors":"A. V. Berezovsky, E. Votinova, A. S. Smolentsev","doi":"10.17804/2410-9908.2023.5.031-038","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.5.031-038","url":null,"abstract":"Arc narrow gap welding of the 35L carbon cast steel (cast carbon steel J03502, grade 1) and the 110G13L high-manganese steel (austenitic manganese steel, ASTM A128) is performed using chromium-nickel-manganese wires in a shielding gas mixture (GOST R ISO 14175–2010 – M21). The welded samples are examined by different methods including optical metallography, hardness measurement, and mechanical tests. The weld metal structure along the weld height in the welded samples proves to be fairly uniform, namely austenite with ferrite inclusions. The experiment results show that the mechanical properties of the weld metal correspond to the intermediate values for the joined steels. The developed technology has made it possible to produce a welded joint with high mechanical properties and a ductile structure.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139325160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.17804/2410-9908.2023.4.047-059
L. Kh. Kogan, A. N. Stashkov
The paper shows the possibility to test the quality of soldering of small current-carrying non-ferromagnetic joints in submersible electrical equipment for oil and gas systems by the amplitude eddy current method using a highly sensitive primary transducer with a U-shaped core. The sensitivity of soldering quality testing under different conditions of generating an exciting signal is compared. It has been found that the sensitivity of NDT in the case of current amplitude stabilized in the excitation coil (current generator) is significantly higher than that in case of voltage amplitude stabilized in it (voltage generator). Possible errors in determining the level of soldering of the joints due to the variation of their cross section within the limits of tolerance according to the technology of their manufacture have been detected. Circuit solutions and software have been developed to test the level of soldering of such joins. Approbation of soldering quality testing was carried out on products manufactured under production conditions.
{"title":"Capabilities of eddy current ndt of soldered current-carrying joints in submersible electrical equipment","authors":"L. Kh. Kogan, A. N. Stashkov","doi":"10.17804/2410-9908.2023.4.047-059","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.4.047-059","url":null,"abstract":"The paper shows the possibility to test the quality of soldering of small current-carrying non-ferromagnetic joints in submersible electrical equipment for oil and gas systems by the amplitude eddy current method using a highly sensitive primary transducer with a U-shaped core. The sensitivity of soldering quality testing under different conditions of generating an exciting signal is compared. It has been found that the sensitivity of NDT in the case of current amplitude stabilized in the excitation coil (current generator) is significantly higher than that in case of voltage amplitude stabilized in it (voltage generator). Possible errors in determining the level of soldering of the joints due to the variation of their cross section within the limits of tolerance according to the technology of their manufacture have been detected. Circuit solutions and software have been developed to test the level of soldering of such joins. Approbation of soldering quality testing was carried out on products manufactured under production conditions.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135003989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.17804/2410-9908.2023.4.060-072
D. V. Perov
Electromagnetic waves of the microwave range are an effective tool for solving problems of non-destructive testing and diagnostics as applied to dielectric, semiconductor, and composite materials, ferrite products. An algorithm is suggested for estimating the complex permittivity of non-magnetic materials by the frequency dependences of reflection and transmission coefficient magnitudes during the interaction of electromagnetic waves in the microwave range with a sample in the form of a plate located in the cross section of a closed rectangular waveguide. Statistical analysis methods are applied to evaluating the errors arising during the application of this algorithm due to imperfect matching of the waveguide measurement path with the receivers and generator of the scalar circuit analyzer. It is shown that the proposed algorithm using the results of measuring reflection and transmission coefficients in a wide frequency range can significantly reduce the influence of frequency-dependent measurement errors on the accuracy of complex permittivity estimation. An additional advantage of the algorithm is that its implementation does not require vector network analyzers, which are very expensive.
{"title":"Estimating complex dielectric permittivity of materials by the frequency dependences of reflection and transmission coefficient magnitudes in the microwave range","authors":"D. V. Perov","doi":"10.17804/2410-9908.2023.4.060-072","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.4.060-072","url":null,"abstract":"Electromagnetic waves of the microwave range are an effective tool for solving problems of non-destructive testing and diagnostics as applied to dielectric, semiconductor, and composite materials, ferrite products. An algorithm is suggested for estimating the complex permittivity of non-magnetic materials by the frequency dependences of reflection and transmission coefficient magnitudes during the interaction of electromagnetic waves in the microwave range with a sample in the form of a plate located in the cross section of a closed rectangular waveguide. Statistical analysis methods are applied to evaluating the errors arising during the application of this algorithm due to imperfect matching of the waveguide measurement path with the receivers and generator of the scalar circuit analyzer. It is shown that the proposed algorithm using the results of measuring reflection and transmission coefficients in a wide frequency range can significantly reduce the influence of frequency-dependent measurement errors on the accuracy of complex permittivity estimation. An additional advantage of the algorithm is that its implementation does not require vector network analyzers, which are very expensive.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135003986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.17804/2410-9908.2023.4.015-028
M. Yu. Filimonov, N. A. Vaganova
Three types of problems related to problems of heat and mass transfer in the soil are considered. The first class of problems deals with the diagnostics of damage of underground pipelines by thermal fields on the soil surface. The second type studies the dynamics of changes in the temperature of a geothermal reservoir depending on the temperature of the water entering this reservoir and the pressure gap between injection and production wells. The third-type problems consider the propagation of non-stationary thermal fields in the soil from operated engineering systems in the permafrost. The main attention is paid to long-term forecasting of the propagation of non-stationary thermal fields in the frozen soil between operating production wells of northern oil and gas fields. In problems of the first two classes, which served as a basis for the development of problems of the third type, water filtration in the soil is considered, and thermal fields propagate in single-phase media. The third-class problems take into account possible phase transitions in the soil when describing non-stationary thermal fields in permafrost soils, leading to Stefan-type problems. Accounting for water migration for the specific third-type problems on the determination of the radius of frozen soil thawing from production wells in northern oil and gas fields does not significantly affect this process since lateral water migration above the groundwater level is minimal. Therefore, only the latent heat of the initial water content is taken into consideration. This paper discusses a mathematical model containing the most significant physical and climatic data affecting the distribution of thermal fields in permafrost rocks and presents the results of numerical calculations.
{"title":"Some problems of heat and mass transfer during the operation of engineering systems in multiphase environments","authors":"M. Yu. Filimonov, N. A. Vaganova","doi":"10.17804/2410-9908.2023.4.015-028","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.4.015-028","url":null,"abstract":"Three types of problems related to problems of heat and mass transfer in the soil are considered. The first class of problems deals with the diagnostics of damage of underground pipelines by thermal fields on the soil surface. The second type studies the dynamics of changes in the temperature of a geothermal reservoir depending on the temperature of the water entering this reservoir and the pressure gap between injection and production wells. The third-type problems consider the propagation of non-stationary thermal fields in the soil from operated engineering systems in the permafrost. The main attention is paid to long-term forecasting of the propagation of non-stationary thermal fields in the frozen soil between operating production wells of northern oil and gas fields. In problems of the first two classes, which served as a basis for the development of problems of the third type, water filtration in the soil is considered, and thermal fields propagate in single-phase media. The third-class problems take into account possible phase transitions in the soil when describing non-stationary thermal fields in permafrost soils, leading to Stefan-type problems. Accounting for water migration for the specific third-type problems on the determination of the radius of frozen soil thawing from production wells in northern oil and gas fields does not significantly affect this process since lateral water migration above the groundwater level is minimal. Therefore, only the latent heat of the initial water content is taken into consideration. This paper discusses a mathematical model containing the most significant physical and climatic data affecting the distribution of thermal fields in permafrost rocks and presents the results of numerical calculations.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135002196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.17804/2410-9908.2023.4.006-014
E. S. Baimetova
The article considers the issues of numerical modeling of a multi-section heat exchanger using the tools of the OpenFOAM open source package. The multi-section heat exchanger is operated at velocities ranging between 0.1 and 2 m/s. Numerical simulation is carried out for a complete assembly of 8 sections. Each section contains six transverse microchannels with internal fins to increase heat transfer. Hydraulic oil with a kinematic viscosity of 0.000032 m2/s is used as the working fluid. As a result of numerical simulation, the hydrodynamic characteristics at the entrance to the microchannels were evaluated depending on the number of sections, as well as hydraulic resistances were evaluated depending on the pressure drop and the flow velocity of the working fluid.
{"title":"Hydrodynamic load on a multi-section heat exchanger","authors":"E. S. Baimetova","doi":"10.17804/2410-9908.2023.4.006-014","DOIUrl":"https://doi.org/10.17804/2410-9908.2023.4.006-014","url":null,"abstract":"The article considers the issues of numerical modeling of a multi-section heat exchanger using the tools of the OpenFOAM open source package. The multi-section heat exchanger is operated at velocities ranging between 0.1 and 2 m/s. Numerical simulation is carried out for a complete assembly of 8 sections. Each section contains six transverse microchannels with internal fins to increase heat transfer. Hydraulic oil with a kinematic viscosity of 0.000032 m2/s is used as the working fluid. As a result of numerical simulation, the hydrodynamic characteristics at the entrance to the microchannels were evaluated depending on the number of sections, as well as hydraulic resistances were evaluated depending on the pressure drop and the flow velocity of the working fluid.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135003982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}