{"title":"INVESTIGATION OF THE INFLUENCE OF MECHANICAL-VIBRATIONAL SOUND ON HYDRODYNAMICS OF A FLUIDIZED BED","authors":"K. Simeiko, M. Sidorenko, R. Chumak","doi":"10.33070/ETARS.2.2018.06","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to investigate the concept of a heat treatment of a small amount of solid material with the maximum contact of the gas and solid material. The solution of this problem consists in passing the process in a fluidized bed. However, the key issue of this solution is the problem of entrainment of solid material. Among feasible ways of the fluid bed hydrodynamics creation is a sound waves transmission through a solid granular material. A visual study on the fluid bed hydrodynamics creation with sound waves was conducted. The estimation of the impact of the trajectory of the particles on the thermophysical properties of the fluidized system was determined. The exploitation of sound waves should increase the intensity of heat exchange inside and between the solid and gas phases. Reactor design scheme for pyrocarbon coatings creation was developed. This scheme implies a small amount of material to be treated. The results obtained can be subsequently applied in the process of developing new fluidized bed apparatus, when the usage of a gas or a liquid as a fluidizing agent is technically impossible (or insufficiently). The prospects for further research include homogenization of the agglomerate layer by means of sound waves. Bibl. 9, Fig. 4.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Technologies & Resource Saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33070/ETARS.2.2018.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The main purpose of this paper is to investigate the concept of a heat treatment of a small amount of solid material with the maximum contact of the gas and solid material. The solution of this problem consists in passing the process in a fluidized bed. However, the key issue of this solution is the problem of entrainment of solid material. Among feasible ways of the fluid bed hydrodynamics creation is a sound waves transmission through a solid granular material. A visual study on the fluid bed hydrodynamics creation with sound waves was conducted. The estimation of the impact of the trajectory of the particles on the thermophysical properties of the fluidized system was determined. The exploitation of sound waves should increase the intensity of heat exchange inside and between the solid and gas phases. Reactor design scheme for pyrocarbon coatings creation was developed. This scheme implies a small amount of material to be treated. The results obtained can be subsequently applied in the process of developing new fluidized bed apparatus, when the usage of a gas or a liquid as a fluidizing agent is technically impossible (or insufficiently). The prospects for further research include homogenization of the agglomerate layer by means of sound waves. Bibl. 9, Fig. 4.