{"title":"Final sheet thickness variation during the non-isothermal calendering process of rheological Prandtl fluid polymer","authors":"Z. Abbas, S. Khaliq, Sibgha Ihsan, M. Rafiq","doi":"10.1177/87560879231186783","DOIUrl":null,"url":null,"abstract":"Industries widely use the calendering process to create coated fabrics, thermoplastic films, plastic sheeting, and textile fabrics to procure the prerequisite surface smoothness plus texture. This article inspects the non-isothermal calendering phenomena with heat transfer mechanism to report the rheological behavior of Prandtl fluid on the sensitivity of sheet thickness with velocity slip at roll’s surface. Lubrication theory is utilized to simplify the governing expressions before normalization. We obtained the zeroth plus first order perturbative solutions for the velocity profile, pressure gradient, pressure distribution, temperature, and sheet thickness. And other mechanical properties are evaluated with a numerical solution. Through graphs and tabular data, how material parameters influence the various flow and engineering parameters are reported. As it can be seen, the material parameters are the main parameters that control the pressure gradient, leading to different final sheet thickness and separating force. As the material parameters increased, sheet thickness and separating force increased.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"58 5 1","pages":"399 - 426"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879231186783","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Industries widely use the calendering process to create coated fabrics, thermoplastic films, plastic sheeting, and textile fabrics to procure the prerequisite surface smoothness plus texture. This article inspects the non-isothermal calendering phenomena with heat transfer mechanism to report the rheological behavior of Prandtl fluid on the sensitivity of sheet thickness with velocity slip at roll’s surface. Lubrication theory is utilized to simplify the governing expressions before normalization. We obtained the zeroth plus first order perturbative solutions for the velocity profile, pressure gradient, pressure distribution, temperature, and sheet thickness. And other mechanical properties are evaluated with a numerical solution. Through graphs and tabular data, how material parameters influence the various flow and engineering parameters are reported. As it can be seen, the material parameters are the main parameters that control the pressure gradient, leading to different final sheet thickness and separating force. As the material parameters increased, sheet thickness and separating force increased.
期刊介绍:
The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).