{"title":"Rapid Prediction of Leaf Water Content in Eucalypt Leaves Using a Handheld NIRS Instrument","authors":"Joel B. Johnson","doi":"10.3390/eng4020070","DOIUrl":null,"url":null,"abstract":"Leaf water content (LWC) is a crucial physiological parameter that plays a limiting role in the efficiency of photosynthesis and biomass production in many plants. This study investigated the use of diffuse reflectance near-infrared spectroscopy (NIRS) for the rapid prediction of the gravimetric LWC in eucalypt leaves from Eucalyptus and Corymbia genera. The best-performing model for LWC gave a R2pred of 0.85 and RMSEP of 2.32% for an independent test set, indicating that the handheld NIR instrument could predict the LWC with a high level of accuracy. The use of support vector regression gave slightly more accurate results compared with partial least squares regression. Prediction models were also developed for leaf thickness, although these were somewhat less accurate (R2pred of 0.58; RMSEP of 2.7 µm). Nevertheless, the results suggest that handheld NIR instruments may be useful for in-field screening of LWC and leaf thickness in Australian eucalypt species. As an example of its use, the NIR method was applied for rapid analysis of the LWC and leaf thickness of every leaf found on an E. populnea sapling.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"489 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4020070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf water content (LWC) is a crucial physiological parameter that plays a limiting role in the efficiency of photosynthesis and biomass production in many plants. This study investigated the use of diffuse reflectance near-infrared spectroscopy (NIRS) for the rapid prediction of the gravimetric LWC in eucalypt leaves from Eucalyptus and Corymbia genera. The best-performing model for LWC gave a R2pred of 0.85 and RMSEP of 2.32% for an independent test set, indicating that the handheld NIR instrument could predict the LWC with a high level of accuracy. The use of support vector regression gave slightly more accurate results compared with partial least squares regression. Prediction models were also developed for leaf thickness, although these were somewhat less accurate (R2pred of 0.58; RMSEP of 2.7 µm). Nevertheless, the results suggest that handheld NIR instruments may be useful for in-field screening of LWC and leaf thickness in Australian eucalypt species. As an example of its use, the NIR method was applied for rapid analysis of the LWC and leaf thickness of every leaf found on an E. populnea sapling.