Re-contextualizing Fairness in NLP: The Case of India

Q3 Environmental Science AACL Bioflux Pub Date : 2022-09-25 DOI:10.48550/arXiv.2209.12226
Shaily Bhatt, Sunipa Dev, Partha P. Talukdar, Shachi Dave, Vinodkumar Prabhakaran
{"title":"Re-contextualizing Fairness in NLP: The Case of India","authors":"Shaily Bhatt, Sunipa Dev, Partha P. Talukdar, Shachi Dave, Vinodkumar Prabhakaran","doi":"10.48550/arXiv.2209.12226","DOIUrl":null,"url":null,"abstract":"Recent research has revealed undesirable biases in NLP data and models. However, these efforts focus of social disparities in West, and are not directly portable to other geo-cultural contexts. In this paper, we focus on NLP fairness in the context of India. We start with a brief account of the prominent axes of social disparities in India. We build resources for fairness evaluation in the Indian context and use them to demonstrate prediction biases along some of the axes. We then delve deeper into social stereotypes for Region and Religion, demonstrating its prevalence in corpora and models. Finally, we outline a holistic research agenda to re-contextualize NLP fairness research for the Indian context, accounting for Indian societal context, bridging technological gaps in NLP capabilities and resources, and adapting to Indian cultural values. While we focus on India, this framework can be generalized to other geo-cultural contexts.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"514 1","pages":"727-740"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.12226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 24

Abstract

Recent research has revealed undesirable biases in NLP data and models. However, these efforts focus of social disparities in West, and are not directly portable to other geo-cultural contexts. In this paper, we focus on NLP fairness in the context of India. We start with a brief account of the prominent axes of social disparities in India. We build resources for fairness evaluation in the Indian context and use them to demonstrate prediction biases along some of the axes. We then delve deeper into social stereotypes for Region and Religion, demonstrating its prevalence in corpora and models. Finally, we outline a holistic research agenda to re-contextualize NLP fairness research for the Indian context, accounting for Indian societal context, bridging technological gaps in NLP capabilities and resources, and adapting to Indian cultural values. While we focus on India, this framework can be generalized to other geo-cultural contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新界定NLP中的公平性:以印度为例
最近的研究揭示了NLP数据和模型中的不良偏差。然而,这些努力主要集中在西方的社会差异,并不能直接适用于其他地缘文化背景。在本文中,我们关注印度背景下的NLP公平性。我们首先简要介绍一下印度社会差异的主要轴线。我们在印度的背景下建立了公平评估的资源,并用它们来展示沿某些轴的预测偏差。然后,我们深入研究了区域和宗教的社会刻板印象,证明了其在语料库和模型中的普遍存在。最后,我们概述了一个整体的研究议程,以重新定位印度背景下的NLP公平性研究,考虑印度的社会背景,弥合NLP能力和资源方面的技术差距,并适应印度的文化价值观。虽然我们关注的是印度,但这个框架可以推广到其他地缘文化背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
HaRiM^+: Evaluating Summary Quality with Hallucination Risk PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems Local Structure Matters Most in Most Languages Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1