{"title":"Lossy compression of sparse histogram image","authors":"M. Iwahashi, H. Kobayashi, H. Kiya","doi":"10.1109/ICASSP.2012.6288143","DOIUrl":null,"url":null,"abstract":"In this paper, a lossy data compression for a sparse histogram image signal is proposed. It is extended from an existing lossless coding which is based on a lossless histogram packing and a lossless coding. We introduce a lossy mapping, which has less computational load than the rate-distortion optimized Lloyd-Max quantization, and combine it with a lossless coding. It was confirmed that the proposed method attains higher performance in the rate-distortion plane than existing methods. This is because it can utilize histogram sparseness of images, and also its inverse mapping does not magnify quantization noise.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"409 1","pages":"1361-1364"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
In this paper, a lossy data compression for a sparse histogram image signal is proposed. It is extended from an existing lossless coding which is based on a lossless histogram packing and a lossless coding. We introduce a lossy mapping, which has less computational load than the rate-distortion optimized Lloyd-Max quantization, and combine it with a lossless coding. It was confirmed that the proposed method attains higher performance in the rate-distortion plane than existing methods. This is because it can utilize histogram sparseness of images, and also its inverse mapping does not magnify quantization noise.