Error analysis in soil urea prediction based on RF spectroscopy

S. Vernekar, Ingrid Nazareth, J. Parab, G. Naik
{"title":"Error analysis in soil urea prediction based on RF spectroscopy","authors":"S. Vernekar, Ingrid Nazareth, J. Parab, G. Naik","doi":"10.1109/ICAECCT.2016.7942591","DOIUrl":null,"url":null,"abstract":"With the growing concern for environmental pollution and shrinking land resources available for agriculture, the need for sustainable agriculture is increasing. Soil sensing plays an important role in sustainable agriculture as it provides an insight into the various soil properties thus enabling the farmer to adjust the inputs accordingly. The aim of the study is to design a soil sensor and analyze the errors in the prediction of a soil nutrient. The manuscript describes a new method for soil nutrient sensing using RF spectroscopy. The technique can predict soil urea content and is based on multivariate analysis using the PLSR (Partial Least Square Regression) mathematical tool. Eight different combinations of five important soil nutrients (Urea, Potash, Phosphate, Salt, and Lime) at varying concentration were used to develop multivariate block. The Urea prediction algorithm takes into account the effect of various other soil nutrients present in the sample. The results obtained show that the percentage error in prediction of urea is within the tolerable limits of +/−5% of the actual value, when other soil nutrient concentrations are varied below and above their normal values. The method can be extended for sensing multiple nutrients simultaneously by modifying the algorithm.","PeriodicalId":6629,"journal":{"name":"2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)","volume":"71 1","pages":"244-246"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECCT.2016.7942591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the growing concern for environmental pollution and shrinking land resources available for agriculture, the need for sustainable agriculture is increasing. Soil sensing plays an important role in sustainable agriculture as it provides an insight into the various soil properties thus enabling the farmer to adjust the inputs accordingly. The aim of the study is to design a soil sensor and analyze the errors in the prediction of a soil nutrient. The manuscript describes a new method for soil nutrient sensing using RF spectroscopy. The technique can predict soil urea content and is based on multivariate analysis using the PLSR (Partial Least Square Regression) mathematical tool. Eight different combinations of five important soil nutrients (Urea, Potash, Phosphate, Salt, and Lime) at varying concentration were used to develop multivariate block. The Urea prediction algorithm takes into account the effect of various other soil nutrients present in the sample. The results obtained show that the percentage error in prediction of urea is within the tolerable limits of +/−5% of the actual value, when other soil nutrient concentrations are varied below and above their normal values. The method can be extended for sensing multiple nutrients simultaneously by modifying the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于射频光谱的土壤尿素预测误差分析
随着人们对环境污染的日益关注和可用于农业的土地资源的不断减少,对可持续农业的需求日益增加。土壤传感在可持续农业中发挥着重要作用,因为它提供了对各种土壤特性的洞察,从而使农民能够相应地调整投入。本研究的目的是设计一种土壤传感器,并分析土壤养分预测中的误差。本文描述了一种利用射频光谱进行土壤养分传感的新方法。该技术可以预测土壤尿素含量,并基于多变量分析,使用PLSR(偏最小二乘回归)数学工具。五种重要土壤养分(尿素、钾肥、磷酸盐、盐和石灰)在不同浓度下的八种不同组合被用来形成多元块。尿素预测算法考虑了样品中存在的各种其他土壤养分的影响。结果表明,当其他土壤养分浓度低于或高于正常值时,预测尿素的百分比误差在实际值+/ - 5%的可容忍范围内。通过对算法的修改,该方法可以扩展到同时检测多种营养物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speakers Emotweet: Sentiment Analysis tool for twitter Design of faster & power efficient sense amplifier using VLSI technology A comparative study on distance measuring approches for permutation representations An embedded system of dedicated and real-time fire detector and locator technology as an interactive response mechanism in fire occurrences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1