On the use of Deep Learning Approaches for Occupancy prediction in Energy Efficient Buildings

H. Elkhoukhi, M. Bakhouya, Majdoulayne Hanifi, D. El Ouadghiri
{"title":"On the use of Deep Learning Approaches for Occupancy prediction in Energy Efficient Buildings","authors":"H. Elkhoukhi, M. Bakhouya, Majdoulayne Hanifi, D. El Ouadghiri","doi":"10.1109/IRSEC48032.2019.9078164","DOIUrl":null,"url":null,"abstract":"Occupancy forecasting is considered as a crucial input for improving the performance of predictive control strategies in energy efficient buildings. In fact, accurate occupancy forecast is the key enabler for context-drive control of active systems (e.g. heating, ventilation, and lighting). This paper focuses on forecasting occupants' number using real-time measurements of CO2 concentration and its forecasting values. The main aim is to evaluate the accuracy of forecasting occupants' number by applying the steady state model (1) [16] on the CO2 forecast using recent deep learning approaches. The LSTM, a recurrent neural network based deep learning algorithm, is deployed to forecast the CO2 level in a dedicated space, a testlab deployed in our university for conducting experiments and assess approaches for energy efficiency in buildings. Preliminary results show the effectiveness of LSTM in forecasting occupants' number, which reaches 70% in accuracy.","PeriodicalId":6671,"journal":{"name":"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"80 1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC48032.2019.9078164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Occupancy forecasting is considered as a crucial input for improving the performance of predictive control strategies in energy efficient buildings. In fact, accurate occupancy forecast is the key enabler for context-drive control of active systems (e.g. heating, ventilation, and lighting). This paper focuses on forecasting occupants' number using real-time measurements of CO2 concentration and its forecasting values. The main aim is to evaluate the accuracy of forecasting occupants' number by applying the steady state model (1) [16] on the CO2 forecast using recent deep learning approaches. The LSTM, a recurrent neural network based deep learning algorithm, is deployed to forecast the CO2 level in a dedicated space, a testlab deployed in our university for conducting experiments and assess approaches for energy efficiency in buildings. Preliminary results show the effectiveness of LSTM in forecasting occupants' number, which reaches 70% in accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习方法在节能建筑入住率预测中的应用
在节能建筑中,入住率预测被认为是提高预测控制策略性能的重要输入。事实上,准确的入住率预测是主动系统(如供暖、通风和照明)的环境驱动控制的关键因素。本文的重点是利用实时测量的二氧化碳浓度及其预测值来预测居住者的数量。主要目的是通过使用最新的深度学习方法将稳态模型(1)[16]应用于CO2预测来评估预测居住者数量的准确性。LSTM是一种基于循环神经网络的深度学习算法,用于预测专用空间的二氧化碳水平,这是我们大学部署的一个测试实验室,用于进行实验和评估建筑物能效的方法。初步结果表明,LSTM预测乘员人数的准确率达到70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Impact of Rooftop Solar PV on Local Temperatures in Urban Areas Novel Stand Alone Solar Still Experimental Validation of an Electromechanical Device to Convert Vehicles Mechanical Energy into Electrical Energy Economic Comparison of Parabolic trough Collector and Linear Fresnel Reflectors Power Plants Maximum Power Point Tracking of Wind Turbine System Connection to Permanent Magnet Synchronous Generator using Fuzzy Logic and Artificial Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1