Characterization of Lateral Friction Surfaced AA6063 Coatings

Ebrahim Seidi, Scott F. Miller
{"title":"Characterization of Lateral Friction Surfaced AA6063 Coatings","authors":"Ebrahim Seidi, Scott F. Miller","doi":"10.1115/imece2021-67839","DOIUrl":null,"url":null,"abstract":"\n Friction surfacing is a solid-state metal deposition technique suitable for a wide range of metallic materials. This technique results in coatings on surfaces for joining purposes or surface modification applications such as wear and corrosion performance improvements. In this study, a novel approach in friction surfacing is utilized in which the consumable tool deposits material from its side instead of the end of the tool, which has been employed in conventional friction surfacing. Frictional heat enables plastic deformation, which results in the depositing of the consumable material on the substrate surface. The process is carried out at temperatures below the melting point of the consumable material, resulting in a solid-state deposition process. In the current study, scanning electron microscopy and energy dispersive spectroscopy have been employed for the characterization of the interfaces and coatings. The results of this study exhibited that there is no elemental diffusion between the tool and substrate materials at the interface, showing that the process temperature was low enough to prevent plasticizing of the substrate surface.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"158 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-67839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Friction surfacing is a solid-state metal deposition technique suitable for a wide range of metallic materials. This technique results in coatings on surfaces for joining purposes or surface modification applications such as wear and corrosion performance improvements. In this study, a novel approach in friction surfacing is utilized in which the consumable tool deposits material from its side instead of the end of the tool, which has been employed in conventional friction surfacing. Frictional heat enables plastic deformation, which results in the depositing of the consumable material on the substrate surface. The process is carried out at temperatures below the melting point of the consumable material, resulting in a solid-state deposition process. In the current study, scanning electron microscopy and energy dispersive spectroscopy have been employed for the characterization of the interfaces and coatings. The results of this study exhibited that there is no elemental diffusion between the tool and substrate materials at the interface, showing that the process temperature was low enough to prevent plasticizing of the substrate surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
横向摩擦表面AA6063涂层的表征
摩擦堆焊是一种适用于多种金属材料的固态金属沉积技术。这种技术的结果是在表面涂上涂层,用于连接目的或表面改性应用,如改善磨损和腐蚀性能。在这项研究中,采用了一种新的摩擦堆焊方法,在这种方法中,消耗性刀具从其侧面沉积材料,而不是在传统的摩擦堆焊中使用的刀具末端沉积材料。摩擦热使塑性变形,从而导致可消耗材料沉积在基材表面。该工艺在低于耗材熔点的温度下进行,从而形成固态沉积工艺。在目前的研究中,采用扫描电子显微镜和能量色散光谱对界面和涂层进行了表征。本研究结果表明,刀具和基体材料之间在界面处没有元素扩散,表明工艺温度足够低,以防止基体表面的塑化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Tribological Performance of Laser Micro-Texturing Ti6Al4V Under Lubrication With Protic Ionic Liquid Strength and Quality of Recycled Acrylonitrile Butadiene Styrene (ABS) Crystalline Phase Changes Due to High-Speed Projectiles Impact on HY100 Steel Mechanical Properties of Snap-Fits Fabricated by Selective Laser Sintering From Polyamide Chemical Structure Analysis of Carbon-Doped Silicon Oxide Thin Films by Plasma-Enhanced Chemical Vapor Deposition of Tetrakis(Trimethylsilyloxy)Silane Precursor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1