{"title":"Sensitivity of MM5-Simulated Boundary Layer Characteristics to Turbulence Parameterizations","authors":"L. Berg, S. Zhong","doi":"10.1175/JAM2292.1","DOIUrl":null,"url":null,"abstract":"Abstract The sensitivity of high-resolution mesoscale simulations to boundary layer turbulence parameterizations is investigated using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) and observations from two field campaigns. Three widely used turbulence parameterizations were selected for evaluation, two of which [Blackadar (BK) and Medium Range Forecast (MRF) schemes] are simple first-order nonlocal schemes and one [Gayno–Seaman (GS) scheme] of which is a more complex 1.5-order local scheme that solves a prognostic equation for turbulence kinetic energy (TKE). The two datasets are the summer 1996 Boundary Layer Experiment (BLX96) in the southern Great Plains and the autumn 2000 Vertical Transport and Mixing (VTMX) field campaign in the Salt Lake Valley in Utah. Comparisons are made between observed and simulated mean variables and turbulence statistics. Despite the differences in their complexity, all three schemes show similar skill predicting near-surface and boundary lay...","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"138 1","pages":"1467-1483"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2292.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80
Abstract
Abstract The sensitivity of high-resolution mesoscale simulations to boundary layer turbulence parameterizations is investigated using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) and observations from two field campaigns. Three widely used turbulence parameterizations were selected for evaluation, two of which [Blackadar (BK) and Medium Range Forecast (MRF) schemes] are simple first-order nonlocal schemes and one [Gayno–Seaman (GS) scheme] of which is a more complex 1.5-order local scheme that solves a prognostic equation for turbulence kinetic energy (TKE). The two datasets are the summer 1996 Boundary Layer Experiment (BLX96) in the southern Great Plains and the autumn 2000 Vertical Transport and Mixing (VTMX) field campaign in the Salt Lake Valley in Utah. Comparisons are made between observed and simulated mean variables and turbulence statistics. Despite the differences in their complexity, all three schemes show similar skill predicting near-surface and boundary lay...