Adaptive algorithm of conforming image matching

V. Fursov, Y. Goshin, K. Pugachev
{"title":"Adaptive algorithm of conforming image matching","authors":"V. Fursov, Y. Goshin, K. Pugachev","doi":"10.18287/1613-0073-2019-2416-26-33","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive algorithm of conforming image matching based on the principle of conformity. The algorithm consists of several main stages. At the first stage, we find the corresponding points using a minimum value of conformity as the measure of points’ similarity. We define a conformity function as the sum of all possible combinations of squared differences of pixel intensity values on the fragments that are matched. Then, we perform an adaptive procedure of errors correction considering an intensity gradient distribution. An important feature of the algorithm is the finding of error points using a criterion of maximum value of samples’ conformity for every fragment of the disparity map. The results of experiments on the \"Teddy\" test images are shown.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-26-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an adaptive algorithm of conforming image matching based on the principle of conformity. The algorithm consists of several main stages. At the first stage, we find the corresponding points using a minimum value of conformity as the measure of points’ similarity. We define a conformity function as the sum of all possible combinations of squared differences of pixel intensity values on the fragments that are matched. Then, we perform an adaptive procedure of errors correction considering an intensity gradient distribution. An important feature of the algorithm is the finding of error points using a criterion of maximum value of samples’ conformity for every fragment of the disparity map. The results of experiments on the "Teddy" test images are shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一致性图像匹配的自适应算法
本文提出了一种基于一致性原理的自适应一致性图像匹配算法。该算法由几个主要阶段组成。在第一阶段,我们使用最小的一致性值作为点的相似性度量来找到相应的点。我们将一致性函数定义为匹配的片段上像素强度值的平方差的所有可能组合的总和。然后,我们执行了一个考虑强度梯度分布的自适应误差校正过程。该算法的一个重要特点是对视差图的每个片段采用样本一致性最大值准则来寻找误差点。给出了在“泰迪”测试图像上的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time Recognition of forest and shrub communities on the base of remotely sensed data supported by ground studies Selection of aggregated classifiers for the prediction of the state of technical objects Method for reconstructing the real coordinates of an object from its plane image Using Models of Parallel Specialized Processors to Solve the Problem of Signal Separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1