Unsupervised Domain Deep Transfer Learning Approach for Rolling Bearing Remaining Useful Life Estimation

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computing and Information Science in Engineering Pub Date : 2023-06-12 DOI:10.1115/1.4062731
M. Rathore, S. Harsha
{"title":"Unsupervised Domain Deep Transfer Learning Approach for Rolling Bearing Remaining Useful Life Estimation","authors":"M. Rathore, S. Harsha","doi":"10.1115/1.4062731","DOIUrl":null,"url":null,"abstract":"\n Accurate estimation of remaining useful life (RUL) becomes a crucial task when bearing operates under dynamic working conditions. The environmental noise, different operating conditions, and multiple fault modes result in the existence of considerable distribution and feature shifts between different domains. To address these issues, a novel framework TSBiLSTM is proposed that utilizes 1DCNN, SBiLSTM, and AM synergically to extract highly abstract feature representation, and domain adaptation is realized using the MK-MMD (multi-kernel maximum mean discrepancy) metric and domain confusion layer. One-dimensional CNN (1DCNN) and stacked bi-directional LSTM (SBiLSTM) are utilized to take advantage of spatio-temporal features with attention mechanism (AM) to selectively process the influential degradation information. MK-MMD provides effective kernel selection along with a domain confusion layer to effectively extract domain invariant features. Both experimentation and comparison studies are conducted to verify the effectiveness and feasibility of the proposed TSBiLSTM model. The generalized performance is demonstrated using IEEE PHM datasets based on RMSE, MAE, absolute percent mean error, and percentage mean error. The promising RUL prediction results validate the superiority and usability of the proposed TSBiLSTM model as a promising prognostic tool for dynamic operating conditions.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062731","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation of remaining useful life (RUL) becomes a crucial task when bearing operates under dynamic working conditions. The environmental noise, different operating conditions, and multiple fault modes result in the existence of considerable distribution and feature shifts between different domains. To address these issues, a novel framework TSBiLSTM is proposed that utilizes 1DCNN, SBiLSTM, and AM synergically to extract highly abstract feature representation, and domain adaptation is realized using the MK-MMD (multi-kernel maximum mean discrepancy) metric and domain confusion layer. One-dimensional CNN (1DCNN) and stacked bi-directional LSTM (SBiLSTM) are utilized to take advantage of spatio-temporal features with attention mechanism (AM) to selectively process the influential degradation information. MK-MMD provides effective kernel selection along with a domain confusion layer to effectively extract domain invariant features. Both experimentation and comparison studies are conducted to verify the effectiveness and feasibility of the proposed TSBiLSTM model. The generalized performance is demonstrated using IEEE PHM datasets based on RMSE, MAE, absolute percent mean error, and percentage mean error. The promising RUL prediction results validate the superiority and usability of the proposed TSBiLSTM model as a promising prognostic tool for dynamic operating conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滚动轴承剩余使用寿命估计的无监督域深度迁移学习方法
轴承在动态工况下运行时,准确估计剩余使用寿命(RUL)是一项至关重要的任务。由于环境噪声、不同的工作条件和多种故障模式,导致不同域之间存在较大的分布和特征偏移。为了解决这些问题,提出了一种新的框架TSBiLSTM,该框架利用1DCNN、SBiLSTM和AM协同提取高度抽象的特征表示,并利用MK-MMD(多核最大平均差异)度量和域混淆层实现域自适应。采用一维CNN (1DCNN)和堆叠双向LSTM (SBiLSTM),利用具有注意机制的时空特征对有影响的退化信息进行选择性处理。MK-MMD提供了有效的核选择和域混淆层,以有效地提取域不变特征。通过实验和对比研究验证了所提出的TSBiLSTM模型的有效性和可行性。使用基于RMSE、MAE、绝对平均误差百分比和平均误差百分比的IEEE PHM数据集验证了该算法的广义性能。有希望的RUL预测结果验证了TSBiLSTM模型作为动态运行条件预测工具的优越性和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
期刊最新文献
Multi-UAV Assisted Flood Navigation of Waterborne Vehicles using Deep Reinforcement Learning Engineering-guided Deep Feature Learning for Manufacturing Process Monitoring What to consider at the development of educational programs and courses about next-generation cyber-physical systems? JCISE Special Issue: Cybersecurity in Manufacturing Robust Contact Computation in Non-Rigid Variation Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1