Anomaly Detection of actual IoT traffic flows through Deep Learning

Lerina Aversano, M. Bernardi, Marta Cimitile, R. Pecori
{"title":"Anomaly Detection of actual IoT traffic flows through Deep Learning","authors":"Lerina Aversano, M. Bernardi, Marta Cimitile, R. Pecori","doi":"10.1109/ICMLA52953.2021.00275","DOIUrl":null,"url":null,"abstract":"The detection and classification of Internet traffic was studied in depth in the last twenty years, but this is still an open research issue as pertains the Internet of Things (IoT), mainly because real IoT traffic dataset are not very widespread. With this paper, we make public an integrated dataset, made of actual IoT network flows, built using six different network sources, which could represent a research reference for further investigations. Furthermore, we exploited it to optimize the hyper-parameters of a deep neural network and evaluate its performance for both distinguishing normal and abnormal traffic and discriminating different types of attacks, achieving very good results.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"233 1","pages":"1736-1741"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection and classification of Internet traffic was studied in depth in the last twenty years, but this is still an open research issue as pertains the Internet of Things (IoT), mainly because real IoT traffic dataset are not very widespread. With this paper, we make public an integrated dataset, made of actual IoT network flows, built using six different network sources, which could represent a research reference for further investigations. Furthermore, we exploited it to optimize the hyper-parameters of a deep neural network and evaluate its performance for both distinguishing normal and abnormal traffic and discriminating different types of attacks, achieving very good results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习实现物联网实际流量异常检测
近二十年来,人们对互联网流量的检测和分类进行了深入的研究,但由于物联网(IoT)的真实流量数据集不是很广泛,这仍然是一个开放的研究问题。在本文中,我们公开了一个集成的数据集,由实际的物联网网络流组成,使用六个不同的网络源,可以为进一步的研究提供参考。此外,我们利用它来优化深度神经网络的超参数,并评估其区分正常和异常流量以及区分不同类型攻击的性能,取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1