Recent developments in microfluidic paper-, cloth-, and thread-based electrochemical devices for analytical chemistry

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Reviews in Analytical Chemistry Pub Date : 2017-07-14 DOI:10.1515/revac-2016-0018
R. S. Malon, L. Heng, E. Córcoles
{"title":"Recent developments in microfluidic paper-, cloth-, and thread-based electrochemical devices for analytical chemistry","authors":"R. S. Malon, L. Heng, E. Córcoles","doi":"10.1515/revac-2016-0018","DOIUrl":null,"url":null,"abstract":"Abstract The attractive structural and mechanical properties of cellulose substrates (paper, cloth, and thread), including passive fluid transport, biocompatibility, durability, and flexibility, have attracted researchers in the past few decades to explore them as alternative microfluidic platforms. The incorporation of electrochemical (EC) sensing broadened their use for applications such as clinical diagnosis, pharmaceutical chemical analyses, food quality, and environmental monitoring. This article provides a review on the microfluidic devices constructed on paper, cloth, and thread substrates. It begins with an overview on paper-based microfluidic devices, followed by an in-depth review on the various applications of EC detection incorporated on paper-based microfluidic devices reported to date. The review on paper-based microfluidic devices attempts to convey a few perspective directions that cloth- and thread-based microfluidic devices may take in its development. Finally, the research efforts on the development and evaluation, as well as current limitations of cloth- and thread-based microfluidic devices are discussed. Microfluidic devices constructed on paper, cloth, and thread substrates are still at an early development stage (prototype) requiring several improvements in terms of fabrication, analytical techniques, and performance to become mature platforms that can be adapted and commercialized as real world products. However, they hold a promising potential as wearable devices.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2017-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2016-0018","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 26

Abstract

Abstract The attractive structural and mechanical properties of cellulose substrates (paper, cloth, and thread), including passive fluid transport, biocompatibility, durability, and flexibility, have attracted researchers in the past few decades to explore them as alternative microfluidic platforms. The incorporation of electrochemical (EC) sensing broadened their use for applications such as clinical diagnosis, pharmaceutical chemical analyses, food quality, and environmental monitoring. This article provides a review on the microfluidic devices constructed on paper, cloth, and thread substrates. It begins with an overview on paper-based microfluidic devices, followed by an in-depth review on the various applications of EC detection incorporated on paper-based microfluidic devices reported to date. The review on paper-based microfluidic devices attempts to convey a few perspective directions that cloth- and thread-based microfluidic devices may take in its development. Finally, the research efforts on the development and evaluation, as well as current limitations of cloth- and thread-based microfluidic devices are discussed. Microfluidic devices constructed on paper, cloth, and thread substrates are still at an early development stage (prototype) requiring several improvements in terms of fabrication, analytical techniques, and performance to become mature platforms that can be adapted and commercialized as real world products. However, they hold a promising potential as wearable devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分析化学的基于纸、布和线的微流体电化学装置的最新进展
纤维素基质(纸、布和线)具有引人注目的结构和机械性能,包括被动流体输送、生物相容性、耐久性和柔韧性,在过去的几十年里吸引了研究人员探索它们作为替代微流体平台。电化学(EC)传感的结合扩大了它们在临床诊断、药物化学分析、食品质量和环境监测等应用中的应用。本文综述了基于纸、布和线的微流控装置的研究进展。首先概述了基于纸的微流控装置,然后深入回顾了迄今为止报告的基于纸的微流控装置上的EC检测的各种应用。本文对纸基微流控器件的研究进展进行了综述,并对布基和线基微流控器件的发展方向进行了展望。最后,讨论了基于布和线的微流控装置的发展和评价,以及目前的局限性。在纸、布和线基板上构建的微流体装置仍处于早期开发阶段(原型),需要在制造、分析技术和性能方面进行几次改进,才能成为成熟的平台,可以作为现实世界的产品进行调整和商业化。然而,它们作为可穿戴设备具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Analytical Chemistry
Reviews in Analytical Chemistry 化学-分析化学
CiteScore
7.50
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.
期刊最新文献
Quantitative methods in the analysis of clozapine in human matrices – A scoping review Latest trends in honey contaminant analysis, challenges, and opportunities for green chemistry development A novel Six Sigma approach and eco-friendly RP-HPLC technique for determination of pimavanserin and its degraded products: Application of Box–Behnken design Recent advance in electrochemical immunosensors for lung cancer biomarkers sensing Greenness of dispersive microextraction using molecularly imprinted polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1