{"title":"Factors affecting air distribution in air conditioning air supply room based on SUPG finite element and zero equation","authors":"Zhen Miao, Zhendi Ma, Qiong-xiang Kong, Yaolin Jiang","doi":"10.1080/19401493.2023.2177731","DOIUrl":null,"url":null,"abstract":"ABSTRACT To simulate the indoor air distribution accurately and quickly, this paper proposed a turbulence calculation model based on the zero-equation model and the SUPG finite element method. The optimal calculation parameters were investigated. The effects of air outlet positions, Reynolds numbers, and obstacle positions on indoor air distribution were studied. The results show that the ranges of Reynolds numbers which satisfy the summer and winter demands of indoor air velocity as the outlet at the right down position are larger than those when the outlet locates left down. When the air outlet locates at the left down position, the velocity non-uniformity coefficients are less than those under the other two conditions. Regardless of whether the air outlet is at the left or right position, the obstacle in the middle of a room can lead to worse velocity uniformity when air velocities in the working zone can meet the velocity demand.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"142 1","pages":"460 - 476"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2177731","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT To simulate the indoor air distribution accurately and quickly, this paper proposed a turbulence calculation model based on the zero-equation model and the SUPG finite element method. The optimal calculation parameters were investigated. The effects of air outlet positions, Reynolds numbers, and obstacle positions on indoor air distribution were studied. The results show that the ranges of Reynolds numbers which satisfy the summer and winter demands of indoor air velocity as the outlet at the right down position are larger than those when the outlet locates left down. When the air outlet locates at the left down position, the velocity non-uniformity coefficients are less than those under the other two conditions. Regardless of whether the air outlet is at the left or right position, the obstacle in the middle of a room can lead to worse velocity uniformity when air velocities in the working zone can meet the velocity demand.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.