Numerical Modelling and Experimental Study of Solidification Behaviour of Al-mg2si Composite Sheet Fabricated Using Continuous Casting Route

IF 1.9 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Heat Transfer-transactions of The Asme Pub Date : 2023-06-17 DOI:10.1115/1.4062758
D. Saini, P. Jha
{"title":"Numerical Modelling and Experimental Study of Solidification Behaviour of Al-mg2si Composite Sheet Fabricated Using Continuous Casting Route","authors":"D. Saini, P. Jha","doi":"10.1115/1.4062758","DOIUrl":null,"url":null,"abstract":"\n Owing to manufacturing challenges, the fabrication of thin sheets of metal matrix composites has been an area of concern for sheet manufacturers. Converting a billet of composite into a sheet using rolling and extrusion is quite energy-intensive and prone to cracking using the conventional casting route. To address this issue, the present study explores the development of particle-reinforced near eutectic Al-Mg2Si composite sheets using a vertical twin-roll continuous casting process. The numerical simulation involves fluid flow, solidification, and heat transfer analysis of the twin-roll continuous casting process for producing thin strips. Processing parameters such as the velocity of rolls and superheat temperature of the melt are optimized to successfully convert the melt into a sheet of composite material. A combined numerical and experimental study shows that the CC process is more sensitive to the casting speed. A small change in roller speed (2 rpm) significantly affects the solidified fraction at the roller exit. Optimizing the casting speed to 0.072 m/s and inlet temperature to 886 K, an in-situ Al-Mg2Si composite sheet of 3 mm thickness is successfully cast. The particle distribution along the casting direction of the sheet is uniform, ensuring the homogeneous mechanical properties reported in terms of hardness. The entire process does not require external stirring to get uniform distribution of the reinforced particles.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062758","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to manufacturing challenges, the fabrication of thin sheets of metal matrix composites has been an area of concern for sheet manufacturers. Converting a billet of composite into a sheet using rolling and extrusion is quite energy-intensive and prone to cracking using the conventional casting route. To address this issue, the present study explores the development of particle-reinforced near eutectic Al-Mg2Si composite sheets using a vertical twin-roll continuous casting process. The numerical simulation involves fluid flow, solidification, and heat transfer analysis of the twin-roll continuous casting process for producing thin strips. Processing parameters such as the velocity of rolls and superheat temperature of the melt are optimized to successfully convert the melt into a sheet of composite material. A combined numerical and experimental study shows that the CC process is more sensitive to the casting speed. A small change in roller speed (2 rpm) significantly affects the solidified fraction at the roller exit. Optimizing the casting speed to 0.072 m/s and inlet temperature to 886 K, an in-situ Al-Mg2Si composite sheet of 3 mm thickness is successfully cast. The particle distribution along the casting direction of the sheet is uniform, ensuring the homogeneous mechanical properties reported in terms of hardness. The entire process does not require external stirring to get uniform distribution of the reinforced particles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Al-mg2si复合材料连铸工艺凝固行为的数值模拟与实验研究
由于制造方面的挑战,金属基复合材料薄板的制造一直是板材制造商关注的一个领域。使用轧制和挤压将复合材料的坯料转化为板材是相当耗能的,并且使用传统的铸造路线容易开裂。为了解决这一问题,本研究探索了采用垂直双辊连铸工艺开发颗粒增强近共晶Al-Mg2Si复合板材。对薄带钢双辊连铸过程的流体流动、凝固和传热进行了数值模拟分析。通过对轧制速度和熔体过热度等工艺参数的优化,成功地将熔体转化为复合材料板材。数值与实验相结合的研究表明,连铸过程对浇注速度更为敏感。辊速(2转/分)的微小变化会显著影响辊出口处的凝固分数。在浇注速度为0.072 m/s、进料温度为886 K的条件下,成功地铸出了厚度为3 mm的原位Al-Mg2Si复合材料板材。沿铸造方向的颗粒分布均匀,确保了硬度方面报告的均匀力学性能。整个过程不需要外部搅拌,以获得均匀分布的增强颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
期刊最新文献
Thermal Resistance Of Heated Superhydrophobic Channels with Streamwise Thermocapillary Stress Analysis of Drying Front Propagation and Coupled Heat and Mass Transfer During Evaporation From Additively-Manufactured Porous Structures Under a Solar Flux Significant Enhancement of Near-Field Radiative Heat Transfer by Misaligned Bilayer Heterostructure of Graphene-Covered Gratings Influence of Buoyancy and Inter-Surface Radiation on Confined Jet Impingement Cooling of a Semi-Cylindrical Concave Plate Significance of Upstream Wall Conditions in Characterizing the Heat Transfer Phenomena of Rarefied Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1