C. Dibekoğlu, E. Bora, Ebru Eroğlu, G. Yurtsever, Y. Uyanikgil, O. Erbaş
{"title":"Effect of celecoxib on intra-abdominal sepsis-induced lung injury in rats","authors":"C. Dibekoğlu, E. Bora, Ebru Eroğlu, G. Yurtsever, Y. Uyanikgil, O. Erbaş","doi":"10.18621/eurj.1333071","DOIUrl":null,"url":null,"abstract":"Objectives: This experimental study investigated the preventive effects of Celecoxib, a selective COX-2 inhibitor, on lung injury induced by intra-abdominal sepsis in rats. The study assessed Celecoxib's potential to mitigate the harmful impacts of sepsis on lung tissue. \nMethods: Thirty male Wistar albino rats, divided into three groups: a normal control group, a sepsis-induced group treated with saline, and a sepsis-induced group treated with Celecoxib. Sepsis was induced using fecal intraperitoneal injection (FIP), followed by a one-hour administration of Celecoxib at 50 mg/kg/day to the treatment group. Biochemical analysis of lung tissue measured oxidative stress markers (malondialdehyde [MDA]) and pro-inflammatory cytokines (Tumor Necrosis Faftor-α [TNF-α]). Histopathological examination evaluated lung tissue damage, encompassing alveolar congestion, hemorrhage, inflammatory cell aggregation, and edema. Arterial blood gas analysis quantified partial oxygen (PaO2) and carbon dioxide (PaCO2) pressures.\nResults: Celecoxib-treated rats exhibited reduced oxidative stress markers with lower MDA levels, indicating decreased oxidative damage in lung tissue. Moreover, TNF-α and other pro-inflammatory cytokines were significantly reduced in lung tissues of Celecoxib-treated rats, indicating its anti-inflammatory effects. Histopathological examination revealed reduced lung tissue damage in Celecoxib-treated rats, including alveolar congestion, hemorrhage, and inflammatory cell aggregation. Arterial blood gas analysis showed improved oxygenation (PaO2) in the Celecoxib-treated group compared to untreated sepsis rats.\nConclusions: Celecoxib demonstrated preventive effects against sepsis-induced lung injury in rats by mitigating oxidative stress and inflammation, thereby preserving lung tissue integrity—further research, including clinical trials, to validate its effectiveness and safety in human sepsis management.","PeriodicalId":22571,"journal":{"name":"The European Research Journal","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18621/eurj.1333071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This experimental study investigated the preventive effects of Celecoxib, a selective COX-2 inhibitor, on lung injury induced by intra-abdominal sepsis in rats. The study assessed Celecoxib's potential to mitigate the harmful impacts of sepsis on lung tissue.
Methods: Thirty male Wistar albino rats, divided into three groups: a normal control group, a sepsis-induced group treated with saline, and a sepsis-induced group treated with Celecoxib. Sepsis was induced using fecal intraperitoneal injection (FIP), followed by a one-hour administration of Celecoxib at 50 mg/kg/day to the treatment group. Biochemical analysis of lung tissue measured oxidative stress markers (malondialdehyde [MDA]) and pro-inflammatory cytokines (Tumor Necrosis Faftor-α [TNF-α]). Histopathological examination evaluated lung tissue damage, encompassing alveolar congestion, hemorrhage, inflammatory cell aggregation, and edema. Arterial blood gas analysis quantified partial oxygen (PaO2) and carbon dioxide (PaCO2) pressures.
Results: Celecoxib-treated rats exhibited reduced oxidative stress markers with lower MDA levels, indicating decreased oxidative damage in lung tissue. Moreover, TNF-α and other pro-inflammatory cytokines were significantly reduced in lung tissues of Celecoxib-treated rats, indicating its anti-inflammatory effects. Histopathological examination revealed reduced lung tissue damage in Celecoxib-treated rats, including alveolar congestion, hemorrhage, and inflammatory cell aggregation. Arterial blood gas analysis showed improved oxygenation (PaO2) in the Celecoxib-treated group compared to untreated sepsis rats.
Conclusions: Celecoxib demonstrated preventive effects against sepsis-induced lung injury in rats by mitigating oxidative stress and inflammation, thereby preserving lung tissue integrity—further research, including clinical trials, to validate its effectiveness and safety in human sepsis management.