Origin Detection of Illicium Verum Hook. f. Based on Sensor Array Optimization

Q4 Biochemistry, Genetics and Molecular Biology American Journal of Biochemistry and Biotechnology Pub Date : 2022-01-01 DOI:10.3844/ajbbsp.2022.1.8
Pang Tao, Lv Lu, Chen Xiaoyan, Ma Jingchen, Liu Xiaozheng
{"title":"Origin Detection of Illicium Verum Hook. f. Based on Sensor Array Optimization","authors":"Pang Tao, Lv Lu, Chen Xiaoyan, Ma Jingchen, Liu Xiaozheng","doi":"10.3844/ajbbsp.2022.1.8","DOIUrl":null,"url":null,"abstract":"Corresponding Author: Chen Xiaoyan College of Information and Engineering, Sichuan Agricultural University, Yaan 625014, China Email: chenxy@sicau.edu.cn Abstract: In order to improve the identification ability of electronic nosetostar anise from different areas, this study uses sensor array optimization, Particle Swarm Optimization (PSO) and Support Vector Machine (SVM) to effectively improve the discrimination and prediction ability of electronic nose. Firstly, the initial sensor arrays are selected according to the aroma components of star anise. On the basis of extracting sensor eigenvalues to form the initial feature matrix, the final sensor arrays are selected by combining variable correlation analysis and coefficient of variation analysis (RSD). Linear Discriminant Analysis (LDA) is applied to the sensor array before and after optimization to increase the group spacing of star anise from different producing areas. Particle swarm Support Vector Machine (PSO-SVM) and Genetic Support Vector Machine (GA-SVM) are used to distinguish the producing areas of star anise samples. The accuracy of PSO-SVM training set is 99.16%; that of test set is 93.33%; that of GA-SVM training set is 99.16% and the accuracy of test set is 90%. The results show that PSO-SVM model has high precision and convergence accuracy and it is more feasible to distinguish the origin of star anises.","PeriodicalId":7412,"journal":{"name":"American Journal of Biochemistry and Biotechnology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Biochemistry and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajbbsp.2022.1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Corresponding Author: Chen Xiaoyan College of Information and Engineering, Sichuan Agricultural University, Yaan 625014, China Email: chenxy@sicau.edu.cn Abstract: In order to improve the identification ability of electronic nosetostar anise from different areas, this study uses sensor array optimization, Particle Swarm Optimization (PSO) and Support Vector Machine (SVM) to effectively improve the discrimination and prediction ability of electronic nose. Firstly, the initial sensor arrays are selected according to the aroma components of star anise. On the basis of extracting sensor eigenvalues to form the initial feature matrix, the final sensor arrays are selected by combining variable correlation analysis and coefficient of variation analysis (RSD). Linear Discriminant Analysis (LDA) is applied to the sensor array before and after optimization to increase the group spacing of star anise from different producing areas. Particle swarm Support Vector Machine (PSO-SVM) and Genetic Support Vector Machine (GA-SVM) are used to distinguish the producing areas of star anise samples. The accuracy of PSO-SVM training set is 99.16%; that of test set is 93.33%; that of GA-SVM training set is 99.16% and the accuracy of test set is 90%. The results show that PSO-SVM model has high precision and convergence accuracy and it is more feasible to distinguish the origin of star anises.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茴香钩的原产地检测。f.基于传感器阵列优化
摘要:为了提高电子鼻对不同地区八角茴香的识别能力,本研究采用传感器阵列优化、粒子群优化(PSO)和支持向量机(SVM)等方法,有效提高电子鼻的识别和预测能力。首先,根据八角茴香成分选择初始传感器阵列;在提取传感器特征值形成初始特征矩阵的基础上,结合变量相关分析和变异系数分析(RSD)选择最终传感器阵列。对优化前后的传感器阵列进行线性判别分析(LDA),增加不同产地八角茴香的群距。采用粒子群支持向量机(PSO-SVM)和遗传支持向量机(GA-SVM)对八角茴香样品产地进行了识别。PSO-SVM训练集的准确率为99.16%;测试集的准确率为93.33%;GA-SVM训练集的准确率为99.16%,测试集的准确率为90%。结果表明,PSO-SVM模型具有较高的精度和收敛精度,在识别八角茴香来源方面更为可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Biochemistry and Biotechnology
American Journal of Biochemistry and Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
0.70
自引率
0.00%
发文量
27
期刊介绍: :: General biochemistry :: Patho-biochemistry :: Evolutionary biotechnology :: Structural biology :: Molecular and cellular biology :: Molecular medicine :: Cancer research :: Virology :: Immunology :: Plant molecular biology and biochemistry :: Experimental methodologies
期刊最新文献
Influence of Brewing Methods and Saccharomyces Cerevisiae on the Aroma And Quality of Shuanghong Vitis Amurensis Wine Preparation of Rose Vinegar Rich in Gamma-Linolenic Acid and Analysis of its Nutritional Composition and Antioxidant Activity Effect of Mercuric Ion on the Oxidant Response and Calcium Ion in the Protoplasts of Arabidopsis Thaliana Association Between Cancer Screening Results Using Single Nucleotide Polymorphism and Cancer Incidence Rate in Korean Women Differential Gene Expression of Peroxide Resistant Protein (AhpC) in Planktonic and Biofilm State of Uropathogenic Escherichia coli Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1