Qingchun Feng, Wang Xiu, W. Zheng, Quan Qiu, Jiang Kai
{"title":"New strawberry harvesting robot for elevated-trough culture","authors":"Qingchun Feng, Wang Xiu, W. Zheng, Quan Qiu, Jiang Kai","doi":"10.25165/IJABE.V5I2.495","DOIUrl":null,"url":null,"abstract":"Feng Qingchun*, Wang Xiu, Zheng Wengang, Qiu Quan, Jiang Kai \n(National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China) \n \nAbstract: In order to improve robotic harvesting and reduce production cost, a harvesting robot system for strawberry on the elevated-trough culture was designed. It was supposed to serve for sightseeing agriculture and technological education. Based on the sonar-camera sensor, an autonomous navigation system of the harvesting robot was built to move along the trough lines independently. The mature fruits were recognized according to the H (Hue) and S (Saturation) color feature and the picking-point were located by the binocular-vision unit. A nondestructive end-effector, used to suck the fruit, hold and cut the fruit-stem, was designed to prevent pericarp damage and disease infection. A joint-type industrial manipulator with six degrees-of-freedom (DOF) was utilized to carry the end-effector. The key points and time steps for the collision-free and rapid motion of manipulator were planned. Experimental results showed that all the 100 mature strawberry targets were recognized automatically in the harvesting test. The success harvesting rate was 86%, and the success harvesting operation cost 31.3 seconds on average, including a single harvest operation of 10 seconds. The average error for fruit location was less than 4.6 mm. \nKeywords: strawberry harvesting robot, elevated-trough culture, machine vision, nondestructive end-effector, autonomous navigation system, manipulator, sensor \nDOI: 10.3965/j.ijabe.20120502.001 \n \nCitation: Feng Q C, Wang X, Zheng W G, Qiu Q, Jiang K. New strawberry harvesting robot for elevated-trough culture. Int J Agric & Biol Eng, 2012; 5(2): 1","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"220 1","pages":"1-8"},"PeriodicalIF":2.2000,"publicationDate":"2012-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.25165/IJABE.V5I2.495","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 71
Abstract
Feng Qingchun*, Wang Xiu, Zheng Wengang, Qiu Quan, Jiang Kai
(National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)
Abstract: In order to improve robotic harvesting and reduce production cost, a harvesting robot system for strawberry on the elevated-trough culture was designed. It was supposed to serve for sightseeing agriculture and technological education. Based on the sonar-camera sensor, an autonomous navigation system of the harvesting robot was built to move along the trough lines independently. The mature fruits were recognized according to the H (Hue) and S (Saturation) color feature and the picking-point were located by the binocular-vision unit. A nondestructive end-effector, used to suck the fruit, hold and cut the fruit-stem, was designed to prevent pericarp damage and disease infection. A joint-type industrial manipulator with six degrees-of-freedom (DOF) was utilized to carry the end-effector. The key points and time steps for the collision-free and rapid motion of manipulator were planned. Experimental results showed that all the 100 mature strawberry targets were recognized automatically in the harvesting test. The success harvesting rate was 86%, and the success harvesting operation cost 31.3 seconds on average, including a single harvest operation of 10 seconds. The average error for fruit location was less than 4.6 mm.
Keywords: strawberry harvesting robot, elevated-trough culture, machine vision, nondestructive end-effector, autonomous navigation system, manipulator, sensor
DOI: 10.3965/j.ijabe.20120502.001
Citation: Feng Q C, Wang X, Zheng W G, Qiu Q, Jiang K. New strawberry harvesting robot for elevated-trough culture. Int J Agric & Biol Eng, 2012; 5(2): 1
期刊介绍:
International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.