{"title":"Probing nitrite ion dynamics in NaNO2 crystals by solid-state 17O NMR","authors":"Yizhe Dai, Ivan Hung, Zhehong Gan, Gang Wu","doi":"10.1002/cmr.a.21409","DOIUrl":null,"url":null,"abstract":"<p>We report a solid-state <sup>17</sup>O (<i>I</i> = 5/2) NMR study of the nitrite ion dynamics in crystalline NaNO<sub>2</sub>. Variable temperature (VT) <sup>17</sup>O NMR spectra were recorded at 3 magnetic fields, 11.7, 14.1, and 21.1 T. The VT <sup>17</sup>O NMR data suggest that the ion in the ferroelectric phase of NaNO<sub>2</sub> undergoes 2-fold flip motion about the crystallographic <i>b</i> axis and the corresponding rotational barrier is 68 ± 5 kJ mol<sup>−1</sup>. We also obtained a 2D <sup>17</sup>O EXSY spectrum for a stationary sample of NaNO<sub>2</sub> at 250 K, which, in combination with 1D <sup>17</sup>O NMR spectral analyses, allowed precise determination of the relative orientation between the <sup>17</sup>O quadrupolar coupling and chemical shift tensors in the molecular frame of reference. The experimentally determined <sup>17</sup>O NMR tensors for NaNO<sub>2</sub> were in agreement with quantum chemical calculations produced by a periodic DFT code BAND.</p>","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"45A 6","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2017-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.a.21409","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.a.21409","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5
Abstract
We report a solid-state 17O (I = 5/2) NMR study of the nitrite ion dynamics in crystalline NaNO2. Variable temperature (VT) 17O NMR spectra were recorded at 3 magnetic fields, 11.7, 14.1, and 21.1 T. The VT 17O NMR data suggest that the ion in the ferroelectric phase of NaNO2 undergoes 2-fold flip motion about the crystallographic b axis and the corresponding rotational barrier is 68 ± 5 kJ mol−1. We also obtained a 2D 17O EXSY spectrum for a stationary sample of NaNO2 at 250 K, which, in combination with 1D 17O NMR spectral analyses, allowed precise determination of the relative orientation between the 17O quadrupolar coupling and chemical shift tensors in the molecular frame of reference. The experimentally determined 17O NMR tensors for NaNO2 were in agreement with quantum chemical calculations produced by a periodic DFT code BAND.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach