{"title":"Observing non-uniform, non-Lüders yielding in a cold-rolled medium manganese steel with digital image correlation","authors":"Bo Raadam, D. Matlock","doi":"10.1017/exp.2022.22","DOIUrl":null,"url":null,"abstract":"Abstract Digital image correlation (DIC) techniques were used to evaluate strain distributions along tensile gage lengths immediately after yielding of a medium manganese steel (7 wt% Mn) in samples cold rolled in the range of 1–6 pct. With an increase in cold work, DIC confirmed that the yielding behavior transitioned from nucleation and propagation of a single localized deformation zone (Lüders band) to uniform deformation, that is, no evidence of strain localization. At intermediate amounts of cold work, a unique yielding behavior was evident where the initially-low positive strain hardening rate increased with tensile strain until conventional strain hardening (i.e., decrease in strain hardening rate with strain). The intermediate yielding behavior was associated with the development of multiple non‑propagating regions of strain localization, an observation not previously evident without the use of DIC.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2022.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Digital image correlation (DIC) techniques were used to evaluate strain distributions along tensile gage lengths immediately after yielding of a medium manganese steel (7 wt% Mn) in samples cold rolled in the range of 1–6 pct. With an increase in cold work, DIC confirmed that the yielding behavior transitioned from nucleation and propagation of a single localized deformation zone (Lüders band) to uniform deformation, that is, no evidence of strain localization. At intermediate amounts of cold work, a unique yielding behavior was evident where the initially-low positive strain hardening rate increased with tensile strain until conventional strain hardening (i.e., decrease in strain hardening rate with strain). The intermediate yielding behavior was associated with the development of multiple non‑propagating regions of strain localization, an observation not previously evident without the use of DIC.