Efficient classification of billions of points into complex geographic regions using hierarchical triangular mesh

Dániel Kondor, L. Dobos, I. Csabai, A. Bodor, G. Vattay, T. Budavári, A. Szalay
{"title":"Efficient classification of billions of points into complex geographic regions using hierarchical triangular mesh","authors":"Dániel Kondor, L. Dobos, I. Csabai, A. Bodor, G. Vattay, T. Budavári, A. Szalay","doi":"10.1145/2618243.2618245","DOIUrl":null,"url":null,"abstract":"We present a case study about the spatial indexing and regional classification of billions of geographic coordinates from geo-tagged social network data using Hierarchical Triangular Mesh (HTM) implemented for Microsoft SQL Server. Due to the lack of certain features of the HTM library, we use it in conjunction with the GIS functions of SQL Server to significantly increase the efficiency of pre-filtering of spatial filter and join queries. For example, we implemented a new algorithm to compute the HTM tessellation of complex geographic regions and precomputed the intersections of HTM triangles and geographic regions for faster false-positive filtering. With full control over the index structure, HTM-based pre-filtering of simple containment searches outperforms SQL Server spatial indices by a factor of ten and HTM-based spatial joins run about a hundred times faster.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"42 1","pages":"4:1-4:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a case study about the spatial indexing and regional classification of billions of geographic coordinates from geo-tagged social network data using Hierarchical Triangular Mesh (HTM) implemented for Microsoft SQL Server. Due to the lack of certain features of the HTM library, we use it in conjunction with the GIS functions of SQL Server to significantly increase the efficiency of pre-filtering of spatial filter and join queries. For example, we implemented a new algorithm to compute the HTM tessellation of complex geographic regions and precomputed the intersections of HTM triangles and geographic regions for faster false-positive filtering. With full control over the index structure, HTM-based pre-filtering of simple containment searches outperforms SQL Server spatial indices by a factor of ten and HTM-based spatial joins run about a hundred times faster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分层三角网格对复杂地理区域的数十亿点进行高效分类
我们提出了一个案例研究,使用基于Microsoft SQL Server的分层三角网格(Hierarchical Triangular Mesh, HTM)对来自地理标记的社交网络数据的数十亿个地理坐标进行空间索引和区域分类。由于HTM库缺乏某些特性,我们将其与SQL Server的GIS功能结合使用,显著提高了空间过滤和连接查询的预过滤效率。例如,我们实现了一种新的算法来计算复杂地理区域的HTM细分,并预先计算HTM三角形与地理区域的交集,以实现更快的假正滤波。通过对索引结构的完全控制,基于html的简单包含搜索的预过滤性能比SQL Server空间索引高出10倍,基于html的空间连接运行速度大约快100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1