Mainlobe Jamming Suppression Via Independent Component Analysis for Polarimetric SIMO Radar

Mengmeng Ge, G. Cui, Zhenghong Zhang, Lin Zhou, Xianxiang Yu, F. Yang, L. Kong
{"title":"Mainlobe Jamming Suppression Via Independent Component Analysis for Polarimetric SIMO Radar","authors":"Mengmeng Ge, G. Cui, Zhenghong Zhang, Lin Zhou, Xianxiang Yu, F. Yang, L. Kong","doi":"10.1109/SAM48682.2020.9104389","DOIUrl":null,"url":null,"abstract":"The presence of mainlobe jamming will significantly reduce the radar detection capabilities. Conventional independent component analysis (ICA)-based methods will suffer from the ineffectiveness when the angle of the target is same as that of the jammer. In this paper, exploring polarization characteristics, we propose an approach based on ICA for polarimetric SIMO (P-SIMO) radar to resist mainlobe jamming. Specifically, the signal model of P-SIMO radar accounting for the target and jamming signals is derived. Then, the approach based on ICA is utilized to separate the target component and jamming component while achieving the mainlobe jamming suppression. Finally, the effectiveness and capacities of proposed method are demonstrated by simulations, and the results show that the proposed method outperforms conventional ICA-based method.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"114 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The presence of mainlobe jamming will significantly reduce the radar detection capabilities. Conventional independent component analysis (ICA)-based methods will suffer from the ineffectiveness when the angle of the target is same as that of the jammer. In this paper, exploring polarization characteristics, we propose an approach based on ICA for polarimetric SIMO (P-SIMO) radar to resist mainlobe jamming. Specifically, the signal model of P-SIMO radar accounting for the target and jamming signals is derived. Then, the approach based on ICA is utilized to separate the target component and jamming component while achieving the mainlobe jamming suppression. Finally, the effectiveness and capacities of proposed method are demonstrated by simulations, and the results show that the proposed method outperforms conventional ICA-based method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独立分量分析的极化SIMO雷达主瓣干扰抑制
主瓣干扰的存在将大大降低雷达的探测能力。传统的基于独立分量分析(ICA)的方法在目标与干扰机夹角相同的情况下会出现失效。本文探讨了偏振特性,提出了一种基于ICA的偏振SIMO (P-SIMO)雷达抗主瓣干扰的方法。具体而言,推导了考虑目标信号和干扰信号的P-SIMO雷达信号模型。然后,利用基于ICA的方法分离目标分量和干扰分量,实现对主瓣干扰的抑制。最后,通过仿真验证了所提方法的有效性和能力,结果表明所提方法优于传统的基于ica的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1