Medicare Fraud Detection Using Machine Learning Methods

Richard A. Bauder, T. Khoshgoftaar
{"title":"Medicare Fraud Detection Using Machine Learning Methods","authors":"Richard A. Bauder, T. Khoshgoftaar","doi":"10.1109/ICMLA.2017.00-48","DOIUrl":null,"url":null,"abstract":"Healthcare is an integral component in people’s lives, especially for the rising elderly population, and must be affordable. Medicare is one such healthcare program. Claims fraud is a major contributor to increased healthcare costs, but its impact can be lessened through fraud detection. In this paper, we compare several machine learning methods to detect Medicare fraud. We perform a comparative study with supervised, unsupervised, and hybrid machine learning approaches using four performance metrics and class imbalance reduction via oversampling and an 80-20 undersampling method. We group the 2015 Medicare data into provider types, with fraud labels from the List of Excluded Individuals/Entities database. Our results show that the successful detection of fraudulent providers is possible, with the 80-20 sampling method demonstrating the best performance across the learners. Furthermore, supervised methods performed better than unsupervised or hybrid methods, but these results varied based on the class imbalance sampling technique and provider type.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"83 1","pages":"858-865"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Healthcare is an integral component in people’s lives, especially for the rising elderly population, and must be affordable. Medicare is one such healthcare program. Claims fraud is a major contributor to increased healthcare costs, but its impact can be lessened through fraud detection. In this paper, we compare several machine learning methods to detect Medicare fraud. We perform a comparative study with supervised, unsupervised, and hybrid machine learning approaches using four performance metrics and class imbalance reduction via oversampling and an 80-20 undersampling method. We group the 2015 Medicare data into provider types, with fraud labels from the List of Excluded Individuals/Entities database. Our results show that the successful detection of fraudulent providers is possible, with the 80-20 sampling method demonstrating the best performance across the learners. Furthermore, supervised methods performed better than unsupervised or hybrid methods, but these results varied based on the class imbalance sampling technique and provider type.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习方法检测医疗保险欺诈
医疗保健是人们生活中不可或缺的组成部分,特别是对不断增加的老年人口来说,必须负担得起。医疗保险就是这样一个医疗保健项目。索赔欺诈是增加医疗保健成本的一个主要因素,但可以通过欺诈检测来减轻其影响。在本文中,我们比较了几种机器学习方法来检测医疗保险欺诈。我们对有监督、无监督和混合机器学习方法进行了比较研究,使用了四个性能指标,并通过过采样和80-20欠采样方法减少了类不平衡。我们将2015年医疗保险数据分组为提供者类型,并使用排除个人/实体数据库列表中的欺诈标签。我们的结果表明,欺诈性提供者的成功检测是可能的,80-20抽样方法在学习器中展示了最佳性能。此外,监督方法比非监督方法或混合方法表现得更好,但这些结果因类不平衡采样技术和提供者类型而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1