{"title":"Conductometric sensing characteristics of nanoplatelet Bi2WO6 as nanosensor for hydrogen detection","authors":"R. Radha, R. A. Rakkesh, S. Balakumar","doi":"10.1063/1.5113156","DOIUrl":null,"url":null,"abstract":"In this work, nanoplatelets of Bi2WO6 were synthesized by facile co-precipitation method followed by physical processing of the precipitate using ultrasonic waves. The X-Ray diffraction (XRD) results confirmed the orthorhombic structure of Bi2WO6, whereas the field emission scanning electron microscopy (FESEM) images revealed nanoplatelet morphology. Chemical analysis was done using X-ray photoelectron spectroscopy (XPS). Thus formation mechanism Bi2WO6 nanoplatelets (NPs) by the method of co-precipitation coupled with ultrasonic waves has been discussed. Gas sensing property of as synthesized Bi2WO6 nanoplatelets was analysed using hydrogen as target gas, a first of its kind. Interestingly a significant decrease in operating temperature was noticed when compared to the available reports for which the mechanism has been demonstrated.In this work, nanoplatelets of Bi2WO6 were synthesized by facile co-precipitation method followed by physical processing of the precipitate using ultrasonic waves. The X-Ray diffraction (XRD) results confirmed the orthorhombic structure of Bi2WO6, whereas the field emission scanning electron microscopy (FESEM) images revealed nanoplatelet morphology. Chemical analysis was done using X-ray photoelectron spectroscopy (XPS). Thus formation mechanism Bi2WO6 nanoplatelets (NPs) by the method of co-precipitation coupled with ultrasonic waves has been discussed. Gas sensing property of as synthesized Bi2WO6 nanoplatelets was analysed using hydrogen as target gas, a first of its kind. Interestingly a significant decrease in operating temperature was noticed when compared to the available reports for which the mechanism has been demonstrated.","PeriodicalId":10874,"journal":{"name":"DAE SOLID STATE PHYSICS SYMPOSIUM 2018","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAE SOLID STATE PHYSICS SYMPOSIUM 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5113156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, nanoplatelets of Bi2WO6 were synthesized by facile co-precipitation method followed by physical processing of the precipitate using ultrasonic waves. The X-Ray diffraction (XRD) results confirmed the orthorhombic structure of Bi2WO6, whereas the field emission scanning electron microscopy (FESEM) images revealed nanoplatelet morphology. Chemical analysis was done using X-ray photoelectron spectroscopy (XPS). Thus formation mechanism Bi2WO6 nanoplatelets (NPs) by the method of co-precipitation coupled with ultrasonic waves has been discussed. Gas sensing property of as synthesized Bi2WO6 nanoplatelets was analysed using hydrogen as target gas, a first of its kind. Interestingly a significant decrease in operating temperature was noticed when compared to the available reports for which the mechanism has been demonstrated.In this work, nanoplatelets of Bi2WO6 were synthesized by facile co-precipitation method followed by physical processing of the precipitate using ultrasonic waves. The X-Ray diffraction (XRD) results confirmed the orthorhombic structure of Bi2WO6, whereas the field emission scanning electron microscopy (FESEM) images revealed nanoplatelet morphology. Chemical analysis was done using X-ray photoelectron spectroscopy (XPS). Thus formation mechanism Bi2WO6 nanoplatelets (NPs) by the method of co-precipitation coupled with ultrasonic waves has been discussed. Gas sensing property of as synthesized Bi2WO6 nanoplatelets was analysed using hydrogen as target gas, a first of its kind. Interestingly a significant decrease in operating temperature was noticed when compared to the available reports for which the mechanism has been demonstrated.