Phenotyping Architecture Traits of Tree Species Using Remote Sensing Techniques

IF 1.4 4区 农林科学 Q3 AGRICULTURAL ENGINEERING Transactions of the ASABE Pub Date : 2021-01-01 DOI:10.13031/trans.14419
Worasit Sangjan, S. Sankaran
{"title":"Phenotyping Architecture Traits of Tree Species Using Remote Sensing Techniques","authors":"Worasit Sangjan, S. Sankaran","doi":"10.13031/trans.14419","DOIUrl":null,"url":null,"abstract":"HighlightsTree canopy architecture traits are associated with its productivity and management.Understanding these traits is important for both precision agriculture and phenomics applications.Remote sensing platforms (satellite, UAV, etc.) and multiple approaches (SfM, LiDAR) have been used to assess these traits.3D reconstruction of tree canopies allows the measurement of tree height, crown area, and canopy volume.Abstract. Tree canopy architecture is associated with light use efficiency and thus productivity. Given the modern training systems in orchard tree fruit systems, modification of tree architecture is becoming important for easier management of crops (e.g., pruning, thinning, chemical application, harvesting, etc.) while maintaining fruit quality and quantity. Similarly, in forest environments, architecture can influence the competitiveness and balance between tree species in the ecosystem. This article reviews the literature related to sensing approaches used for assessing architecture traits and the factors that influence such evaluation processes. Digital imagery integrated with structure from motion analysis and both terrestrial and aerial light detection and ranging (LiDAR) systems have been commonly used. In addition, satellite imagery and other techniques have been explored. Some of the major findings and some critical considerations for such measurement methods are summarized here. Keywords: Canopy volume, LiDAR system, Structure from motion, Tree height, UAV.","PeriodicalId":23120,"journal":{"name":"Transactions of the ASABE","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the ASABE","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/trans.14419","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 7

Abstract

HighlightsTree canopy architecture traits are associated with its productivity and management.Understanding these traits is important for both precision agriculture and phenomics applications.Remote sensing platforms (satellite, UAV, etc.) and multiple approaches (SfM, LiDAR) have been used to assess these traits.3D reconstruction of tree canopies allows the measurement of tree height, crown area, and canopy volume.Abstract. Tree canopy architecture is associated with light use efficiency and thus productivity. Given the modern training systems in orchard tree fruit systems, modification of tree architecture is becoming important for easier management of crops (e.g., pruning, thinning, chemical application, harvesting, etc.) while maintaining fruit quality and quantity. Similarly, in forest environments, architecture can influence the competitiveness and balance between tree species in the ecosystem. This article reviews the literature related to sensing approaches used for assessing architecture traits and the factors that influence such evaluation processes. Digital imagery integrated with structure from motion analysis and both terrestrial and aerial light detection and ranging (LiDAR) systems have been commonly used. In addition, satellite imagery and other techniques have been explored. Some of the major findings and some critical considerations for such measurement methods are summarized here. Keywords: Canopy volume, LiDAR system, Structure from motion, Tree height, UAV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遥感技术的树种表型结构特征研究
highlighttree树冠建筑的特点与它的生产力和管理有关。了解这些性状对精准农业和表型组学应用都很重要。遥感平台(卫星、无人机等)和多种方法(SfM、LiDAR)已被用于评估这些特征。树冠的三维重建可以测量树高、树冠面积和树冠体积。树冠建筑与光的利用效率和生产力有关。鉴于果园果树系统的现代培训系统,修改树木结构对于更容易管理作物(例如,修剪,间伐,化学施用,收获等)同时保持果实的质量和数量变得重要。同样,在森林环境中,建筑可以影响生态系统中树种之间的竞争和平衡。本文回顾了与用于评估建筑特征的传感方法和影响评估过程的因素相关的文献。与运动分析结构相结合的数字图像以及地面和空中光探测和测距(LiDAR)系统已被广泛使用。此外,还探索了卫星图像和其他技术。这里总结了这些测量方法的一些主要发现和一些关键考虑。关键词:冠层体积,激光雷达系统,运动结构,树高,无人机
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions of the ASABE
Transactions of the ASABE AGRICULTURAL ENGINEERING-
CiteScore
2.30
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: This peer-reviewed journal publishes research that advances the engineering of agricultural, food, and biological systems. Submissions must include original data, analysis or design, or synthesis of existing information; research information for the improvement of education, design, construction, or manufacturing practice; or significant and convincing evidence that confirms and strengthens the findings of others or that revises ideas or challenges accepted theory.
期刊最新文献
Effectiveness of Nutrient Management for Reducing Phosphorus Losses from Agricultural Areas. Effectiveness of Nutrient Management on Water Quality Improvement: A Synthesis on Nitrate-Nitrogen Loss from Subsurface Drainage. Comparison of Droplet Size, Coverage, and Drift Potential from UAV Application Methods and Ground Application Methods on Row Crops. Effectiveness of Conservation Crop Rotation for Water Pollutant Reduction from Agricultural Areas. Experimental Study on Critical Shear Stress of Cohesive Soils and Soil Mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1