A new hybrid algorithm based on MVO and SA for function optimization

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL International Journal of Industrial Engineering Computations Pub Date : 2022-01-01 DOI:10.5267/j.ijiec.2021.11.001
Ö. Yılmaz, A. A. Altun, Murat Köklü
{"title":"A new hybrid algorithm based on MVO and SA for function optimization","authors":"Ö. Yılmaz, A. A. Altun, Murat Köklü","doi":"10.5267/j.ijiec.2021.11.001","DOIUrl":null,"url":null,"abstract":"Hybrid algorithms are widely used today to increase the performance of existing algorithms. In this paper, a new hybrid algorithm called IMVOSA that is based on multi-verse optimizer (MVO) and simulated annealing (SA) is used. In this model, a new method called the black hole selection (BHS) is proposed, in which exploration and exploitation can be increased. In the BHS method, the acceptance probability feature of the SA algorithm is used to increase exploitation by searching for the best regions found by the MVO algorithm. The proposed IMVOSA algorithm has been tested on 50 benchmark functions. The performance of IMVOSA has been compared with other latest and well-known metaheuristic algorithms. The consequences show that IMVOSA produces highly successful and competitive results.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"7 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5267/j.ijiec.2021.11.001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 3

Abstract

Hybrid algorithms are widely used today to increase the performance of existing algorithms. In this paper, a new hybrid algorithm called IMVOSA that is based on multi-verse optimizer (MVO) and simulated annealing (SA) is used. In this model, a new method called the black hole selection (BHS) is proposed, in which exploration and exploitation can be increased. In the BHS method, the acceptance probability feature of the SA algorithm is used to increase exploitation by searching for the best regions found by the MVO algorithm. The proposed IMVOSA algorithm has been tested on 50 benchmark functions. The performance of IMVOSA has been compared with other latest and well-known metaheuristic algorithms. The consequences show that IMVOSA produces highly successful and competitive results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于MVO和SA的函数优化混合算法
混合算法被广泛用于提高现有算法的性能。本文提出了一种基于多宇宙优化器(MVO)和模拟退火(SA)的混合算法IMVOSA。在该模型中,提出了一种新的黑洞选择方法(BHS),该方法可以增加对黑洞的勘探和开采。在BHS方法中,利用SA算法的接受概率特征,通过搜索MVO算法找到的最佳区域来增加利用。所提出的IMVOSA算法已经在50个基准函数上进行了测试。将IMVOSA算法的性能与其他最新和知名的元启发式算法进行了比较。结果表明,IMVOSA产生了非常成功和有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
9.10%
发文量
35
审稿时长
20 weeks
期刊最新文献
A unifying framework and a mathematical model for the Slab Stack Shuffling Problem Heuristics and metaheuristics to minimize makespan for flowshop with peak power consumption constraints Minimizing operating expenditures for a manufacturing system featuring quality reassurances, probabilistic failures, overtime, and outsourcing Composite heuristics and water wave optimality algorithms for tri-criteria multiple job classes and customer order scheduling on a single machine Investigating the collective impact of postponement, scrap, and external suppliers on multiproduct replenishing decision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1