Optoelectronic neural networks: mapping multilayer architectures on to an optoelectronic demonstrator

A. Waddie, K. Symington, J. Snowdon, M. Taghizadeh
{"title":"Optoelectronic neural networks: mapping multilayer architectures on to an optoelectronic demonstrator","authors":"A. Waddie, K. Symington, J. Snowdon, M. Taghizadeh","doi":"10.1109/CLEOE.2003.1313588","DOIUrl":null,"url":null,"abstract":"In this paper we outline some of the changes needed to implement multilayer feed-forward neural networks using the demonstrator hardware which was based on around an array of vertical cavity surface emitting lasers. Network simulations show that the neural network demonstrator hardware can be used to implement two different classes of feed-forward network, the multilayer perceptron (MLP) and radial basis function (RBF) networks. In both cases, the actual training of the networks is performed offline using hardware simulations and the weighted interconnections between neurons are fixed before application to the optoelectronic hardware.","PeriodicalId":6370,"journal":{"name":"2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666)","volume":"110 1","pages":"526-"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat. No.03TH8666)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2003.1313588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we outline some of the changes needed to implement multilayer feed-forward neural networks using the demonstrator hardware which was based on around an array of vertical cavity surface emitting lasers. Network simulations show that the neural network demonstrator hardware can be used to implement two different classes of feed-forward network, the multilayer perceptron (MLP) and radial basis function (RBF) networks. In both cases, the actual training of the networks is performed offline using hardware simulations and the weighted interconnections between neurons are fixed before application to the optoelectronic hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光电神经网络:将多层架构映射到光电演示器上
在本文中,我们概述了使用基于垂直腔面发射激光器阵列的演示硬件实现多层前馈神经网络所需的一些变化。网络仿真表明,神经网络演示硬件可以实现两种不同类型的前馈网络,即多层感知器(MLP)和径向基函数(RBF)网络。在这两种情况下,网络的实际训练都是通过硬件模拟离线进行的,并且神经元之间的加权互连在应用于光电硬件之前是固定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can the transformation time in phase change optical recording be improved by using femtosecond laser pulses? Single-step definition of channel waveguides with integral Bragg gratings in germanosilica-on-silicon wafers by direct UV writing High-power air-clad large-mode-area photonic crystal fiber laser Etching of oxide semiconductors by ultrashort laser pulses Dielectrically enhanced binding energies of excitons in an inorgani-organic quantum well crystal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1