MEMS resonator mass loading noise model: The case of bimodal adsorbing surface and finite adsorbate amount

IF 0.6 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Facta Universitatis-Series Electronics and Energetics Pub Date : 2021-01-01 DOI:10.2298/fuee2103367j
I. Jokić, O. Jakšić, M. Frantlović, Z. Jakšić, K. Guha
{"title":"MEMS resonator mass loading noise model: The case of bimodal adsorbing surface and finite adsorbate amount","authors":"I. Jokić, O. Jakšić, M. Frantlović, Z. Jakšić, K. Guha","doi":"10.2298/fuee2103367j","DOIUrl":null,"url":null,"abstract":"Modeling of adsorption and desorption in microelectromechanical systems (MEMS) generally is crucial for their optimization and control, whether it is necessary to decrease the adsorption-desorption influence (thus ensuring stable operation of ultra-precise micro and nanoresonators) or to increase it (and enhancing in this manner the sensitivity of chemical and biological resonant sensors). In this work we derive and use analytical mathematical expressions to model stochastic fluctuations of the mass adsorbed on the MEMS resonator (mass loading noise). We consider the case where the resonator surface incorporates two different types of binding sites and where non-negligible depletion of the adsorbate occurs in a closed resonator chamber. We arrive at a novel expression for the power spectral density of mass loading noise in resonators and prove the necessity of its application in cases when resonators are exposed to low adsorbate concentrations. We use the novel approach presented here to calculate the resonator performance. In this way we ensure optimization of these MEMS devices and consequentially abatement of adsorption-desorption noise-caused degradation of their operation, both in the case of micro/nanoresonators and resonant sensors. This work is intended for a general use in the design, development and optimization of different MEMS systems based on mechanical resonators, ranging from the RF components to chemical and biological sensors.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"40 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Electronics and Energetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fuee2103367j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling of adsorption and desorption in microelectromechanical systems (MEMS) generally is crucial for their optimization and control, whether it is necessary to decrease the adsorption-desorption influence (thus ensuring stable operation of ultra-precise micro and nanoresonators) or to increase it (and enhancing in this manner the sensitivity of chemical and biological resonant sensors). In this work we derive and use analytical mathematical expressions to model stochastic fluctuations of the mass adsorbed on the MEMS resonator (mass loading noise). We consider the case where the resonator surface incorporates two different types of binding sites and where non-negligible depletion of the adsorbate occurs in a closed resonator chamber. We arrive at a novel expression for the power spectral density of mass loading noise in resonators and prove the necessity of its application in cases when resonators are exposed to low adsorbate concentrations. We use the novel approach presented here to calculate the resonator performance. In this way we ensure optimization of these MEMS devices and consequentially abatement of adsorption-desorption noise-caused degradation of their operation, both in the case of micro/nanoresonators and resonant sensors. This work is intended for a general use in the design, development and optimization of different MEMS systems based on mechanical resonators, ranging from the RF components to chemical and biological sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEMS谐振器质量加载噪声模型:双峰吸附面和有限吸附量的情况
微机电系统(MEMS)中吸附和解吸的建模通常对其优化和控制至关重要,无论是否需要减少吸附-解吸影响(从而确保超精密微纳谐振器的稳定运行)还是增加吸附-解吸影响(并以此方式提高化学和生物谐振传感器的灵敏度)。在这项工作中,我们推导并使用解析数学表达式来模拟吸附在MEMS谐振器上的质量的随机波动(质量加载噪声)。我们考虑谐振腔表面包含两种不同类型结合位点的情况,并且在封闭的谐振腔中发生不可忽略的吸附质损耗。我们得到了谐振腔中质量加载噪声功率谱密度的新表达式,并证明了在低吸附质浓度谐振腔中应用该表达式的必要性。我们使用本文提出的新方法来计算谐振器的性能。通过这种方式,我们确保了这些MEMS器件的优化,并相应地减少了微/纳米谐振器和谐振传感器中由吸附-解吸噪声引起的操作退化。这项工作旨在为基于机械谐振器的不同MEMS系统的设计,开发和优化提供一般用途,从射频组件到化学和生物传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Facta Universitatis-Series Electronics and Energetics
Facta Universitatis-Series Electronics and Energetics ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
16.70%
发文量
10
审稿时长
20 weeks
期刊最新文献
Machine learning assisted optimization and its application to hybrid dielectric resonator antenna design Performance of wearable circularly polarized antenna on different high frequency substrates for dual-band wireless applications Dual band MIMO antenna for LTE, 4G and sub-6 GHz 5G applications Discrete time quasi-sliding mode-based control of LCL grid inverters Performance analysis of FinFET based inverter, NAND and NOR circuits at 10 NM,7 NM and 5 NM node technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1