Answer-enhanced Path-aware Relation Detection over Knowledge Base

Daoyuan Chen, Min Yang, Haitao Zheng, Yaliang Li, Ying Shen
{"title":"Answer-enhanced Path-aware Relation Detection over Knowledge Base","authors":"Daoyuan Chen, Min Yang, Haitao Zheng, Yaliang Li, Ying Shen","doi":"10.1145/3331184.3331328","DOIUrl":null,"url":null,"abstract":"Knowledge Based Question Answering (KBQA) is one of the most promising approaches to provide suitable answers for the queries posted by users. Relation detection that aims to take full advantage of the substantial knowledge contained in knowledge base (KB) becomes increasingly important. Significant progress has been made in performing relation detection over KB. However, recent deep neural networks that achieve the state of the art on KB-based relation detection task only consider the context information of question sentences rather than the relatedness between question and answer candidates, and exclusively extract the relation from KB triple rather than learn informative relational path. In this paper, we propose a Knowledge-driven Relation Detection network (KRD) to interactively learn answer-enhanced question representations and path-aware relation representations for relation detection. A Siamese LSTM is employed into a similarity matching process between the question representation and relation representation. Experimental results on the SimpleQuestions and WebQSP datasets demonstrate that KRD outperforms the state-of-the-art methods. In addition, a series of ablation test show the robust superiority of the proposed method.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Knowledge Based Question Answering (KBQA) is one of the most promising approaches to provide suitable answers for the queries posted by users. Relation detection that aims to take full advantage of the substantial knowledge contained in knowledge base (KB) becomes increasingly important. Significant progress has been made in performing relation detection over KB. However, recent deep neural networks that achieve the state of the art on KB-based relation detection task only consider the context information of question sentences rather than the relatedness between question and answer candidates, and exclusively extract the relation from KB triple rather than learn informative relational path. In this paper, we propose a Knowledge-driven Relation Detection network (KRD) to interactively learn answer-enhanced question representations and path-aware relation representations for relation detection. A Siamese LSTM is employed into a similarity matching process between the question representation and relation representation. Experimental results on the SimpleQuestions and WebQSP datasets demonstrate that KRD outperforms the state-of-the-art methods. In addition, a series of ablation test show the robust superiority of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于知识库的答案增强路径感知关系检测
基于知识的问答(KBQA)是为用户提出的问题提供合适答案的最有前途的方法之一。以充分利用知识库中包含的大量知识为目标的关系检测变得越来越重要。在KB上执行关系检测方面取得了重大进展。然而,目前在基于知识库的关系检测任务上取得最新进展的深度神经网络只考虑问题句子的上下文信息,而没有考虑问题和答案候选之间的相关性,并且只从知识库三元组中提取关系,而没有学习信息关系路径。在本文中,我们提出了一个知识驱动的关系检测网络(KRD),以交互式地学习答案增强的问题表示和路径感知的关系表示,用于关系检测。采用Siamese LSTM对问题表示和关系表示进行相似度匹配。在SimpleQuestions和WebQSP数据集上的实验结果表明,KRD优于最先进的方法。此外,一系列烧蚀试验表明了该方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1