Application of Np–Am Mixture in Production of 238Pu in a VVER-1000 Reactor and the Reactivity Effect Caused by Loss-of-Coolant Accident in the Central Np–Am Fuel Assembly

IF 0.5 Q4 NUCLEAR SCIENCE & TECHNOLOGY Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-06-01 DOI:10.3390/jne4020029
A. Shmelev, N. Geraskin, V. Apse, V. Glebov, E. Kulikov, A. Krasnoborodko
{"title":"Application of Np–Am Mixture in Production of 238Pu in a VVER-1000 Reactor and the Reactivity Effect Caused by Loss-of-Coolant Accident in the Central Np–Am Fuel Assembly","authors":"A. Shmelev, N. Geraskin, V. Apse, V. Glebov, E. Kulikov, A. Krasnoborodko","doi":"10.3390/jne4020029","DOIUrl":null,"url":null,"abstract":"This paper presents the results obtained from numerical evaluations for the possibility of large-scale 238Pu production in the light-water VVER-1000 reactor and the reactivity effect caused by the loss-of-coolant accident in the central fuel assembly of the reactor core. This fuel assembly containing the Np–Am-component of minor actinides was placed in the center of the reactor core and intended for intense production of 238Pu. Optimal conditions were found for large-scale production of plutonium with an isotope composition suitable for application in radioisotope thermoelectric generators. The reactivity effect from the loss-of-coolant accident in the central Np–Am fuel assembly was evaluated, and the perturbation theory was used to determine the contributions of some neutron processes (leakage, absorption, and moderation) to the total variation of the effective neutron multiplication factor.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":"50 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jne4020029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results obtained from numerical evaluations for the possibility of large-scale 238Pu production in the light-water VVER-1000 reactor and the reactivity effect caused by the loss-of-coolant accident in the central fuel assembly of the reactor core. This fuel assembly containing the Np–Am-component of minor actinides was placed in the center of the reactor core and intended for intense production of 238Pu. Optimal conditions were found for large-scale production of plutonium with an isotope composition suitable for application in radioisotope thermoelectric generators. The reactivity effect from the loss-of-coolant accident in the central Np–Am fuel assembly was evaluated, and the perturbation theory was used to determine the contributions of some neutron processes (leakage, absorption, and moderation) to the total variation of the effective neutron multiplication factor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Np-Am混合物在VVER-1000反应堆238Pu生产中的应用及中央Np-Am燃料组件冷却剂丢失事故引起的反应性影响
本文介绍了轻水VVER-1000反应堆大规模生产238Pu的可能性和堆芯中心燃料组件失冷剂事故引起的反应性影响的数值评估结果。这种含有微量锕系元素的np - am成分的燃料组件被放置在反应堆堆芯的中心,用于大量生产238Pu。找到了大规模生产钚的最佳条件,其同位素组成适合应用于放射性同位素热电发生器。评估了中央Np-Am燃料组件冷却剂损失事故的反应性影响,并利用微扰理论确定了一些中子过程(泄漏、吸收和缓和)对有效中子倍增因子总变化的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
期刊介绍: The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.
期刊最新文献
Verification and Geometry Optimization of a One Fluid Molten Salt Reactor (OFMSR) with Fixed Volume The Transfer of Xenon-135 to Molten Salt Reactor Graphite Molten Salt Pump Journal-Bearings Dynamic Characteristics Under Hydrodynamic Lubrication Conditions Technical Brief: Safeguardability Analysis of a Molten Salt Sampling System Design An Improved Heat Flux Partitioning Model of Nucleate Boiling Under Saturated Pool Boiling Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1