V. Mille, N. Bourzgui, F. Mejdjoub, L. Desplanque, J. Lampin, P. Supiot, B. Bocquet
{"title":"Technological development of THz microfluidic microsystems for biological spectroscopy","authors":"V. Mille, N. Bourzgui, F. Mejdjoub, L. Desplanque, J. Lampin, P. Supiot, B. Bocquet","doi":"10.1109/ICIMW.2004.1422207","DOIUrl":null,"url":null,"abstract":"We investigate a possible fabrication of microfluidic MEMS dedicated to the THz spectroscopy in a mixing technology based on silicon substrate coated with a thick layer of polymer. This layer is useful for the microfluidic circulation and the electromagnetic propagation. We use an original deposition process realized by RPECVD (remote plasma enhanced vapor deposition), called also \"cold plasma\". We obtain layers up to 110 /spl mu/m without any cracks. We have measured the dielectric characteristics of this new type of polymer up to 220 GHz with a vectorial network analyzer and between 0.1 to 1.2 THz in the time domain with an electro-optic technique. This technology is now ready and allows realizing a mass production compatible with disposable bioMEMS.","PeriodicalId":13627,"journal":{"name":"Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004.","volume":"6 1","pages":"549-550"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMW.2004.1422207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We investigate a possible fabrication of microfluidic MEMS dedicated to the THz spectroscopy in a mixing technology based on silicon substrate coated with a thick layer of polymer. This layer is useful for the microfluidic circulation and the electromagnetic propagation. We use an original deposition process realized by RPECVD (remote plasma enhanced vapor deposition), called also "cold plasma". We obtain layers up to 110 /spl mu/m without any cracks. We have measured the dielectric characteristics of this new type of polymer up to 220 GHz with a vectorial network analyzer and between 0.1 to 1.2 THz in the time domain with an electro-optic technique. This technology is now ready and allows realizing a mass production compatible with disposable bioMEMS.