Dog Noseprint Identification Algorithm

Sungmin Cho, Jinwook Paeng, Taehong Kim, Chanil Kim, Ji Soo Kim, Hyeseong Kim, Junseok Kwon
{"title":"Dog Noseprint Identification Algorithm","authors":"Sungmin Cho, Jinwook Paeng, Taehong Kim, Chanil Kim, Ji Soo Kim, Hyeseong Kim, Junseok Kwon","doi":"10.1109/ICOIN50884.2021.9333973","DOIUrl":null,"url":null,"abstract":"This paper proposes a dog noseprint identification system based on Gabor filter and feature matching. Given images of dog noseprints, the system determines the region of interest, pre-processes the images using adaptive thresholding, extracts features, and performs feature matching to identify dogs. To extract features, we first apply the Gabor filter with 60 directions to images. Then we employ the scale invariant feature transform (SIFT) feature extractor to obtain keypoints that are invariant to image rotation and scaling. The extracted keypoints are compared with reference key-points of a dog noseprint that needs to be identified. To improve the matching accuracy, we present several matching algorithms. Experiments show that the SIFT based identification system method surpasses other methods in terms of accuracy, while the ORB based on system outperforms other methods in terms of speed.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"17 1","pages":"798-800"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a dog noseprint identification system based on Gabor filter and feature matching. Given images of dog noseprints, the system determines the region of interest, pre-processes the images using adaptive thresholding, extracts features, and performs feature matching to identify dogs. To extract features, we first apply the Gabor filter with 60 directions to images. Then we employ the scale invariant feature transform (SIFT) feature extractor to obtain keypoints that are invariant to image rotation and scaling. The extracted keypoints are compared with reference key-points of a dog noseprint that needs to be identified. To improve the matching accuracy, we present several matching algorithms. Experiments show that the SIFT based identification system method surpasses other methods in terms of accuracy, while the ORB based on system outperforms other methods in terms of speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
狗鼻印识别算法
提出了一种基于Gabor滤波和特征匹配的狗鼻纹识别系统。给定狗的鼻印图像,系统确定感兴趣的区域,使用自适应阈值法对图像进行预处理,提取特征,并进行特征匹配以识别狗。为了提取特征,我们首先对图像应用60个方向的Gabor滤波器。然后利用尺度不变特征变换(SIFT)特征提取器获得不受图像旋转和缩放影响的关键点。将提取的关键点与需要识别的狗鼻印的参考关键点进行比较。为了提高匹配精度,我们提出了几种匹配算法。实验表明,基于SIFT的识别系统方法在准确率上优于其他方法,而基于ORB的识别系统方法在速度上优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1