{"title":"Keyword-Assisted Topic Models","authors":"Shusei Eshima, Kosuke Imai, Tomoya Sasaki","doi":"10.1111/ajps.12779","DOIUrl":null,"url":null,"abstract":"<p>In recent years, fully automated content analysis based on probabilistic topic models has become popular among social scientists because of their scalability. However, researchers find that these models often fail to measure specific concepts of substantive interest by inadvertently creating multiple topics with similar content and combining distinct themes into a single topic. In this article, we empirically demonstrate that providing a small number of keywords can substantially enhance the measurement performance of topic models. An important advantage of the proposed keyword-assisted topic model (keyATM) is that the specification of keywords requires researchers to label topics prior to fitting a model to the data. This contrasts with a widespread practice of post hoc topic interpretation and adjustments that compromises the objectivity of empirical findings. In our application, we find that keyATM provides more interpretable results, has better document classification performance, and is less sensitive to the number of topics.</p>","PeriodicalId":48447,"journal":{"name":"American Journal of Political Science","volume":"68 2","pages":"730-750"},"PeriodicalIF":5.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Political Science","FirstCategoryId":"90","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ajps.12779","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, fully automated content analysis based on probabilistic topic models has become popular among social scientists because of their scalability. However, researchers find that these models often fail to measure specific concepts of substantive interest by inadvertently creating multiple topics with similar content and combining distinct themes into a single topic. In this article, we empirically demonstrate that providing a small number of keywords can substantially enhance the measurement performance of topic models. An important advantage of the proposed keyword-assisted topic model (keyATM) is that the specification of keywords requires researchers to label topics prior to fitting a model to the data. This contrasts with a widespread practice of post hoc topic interpretation and adjustments that compromises the objectivity of empirical findings. In our application, we find that keyATM provides more interpretable results, has better document classification performance, and is less sensitive to the number of topics.
期刊介绍:
The American Journal of Political Science (AJPS) publishes research in all major areas of political science including American politics, public policy, international relations, comparative politics, political methodology, and political theory. Founded in 1956, the AJPS publishes articles that make outstanding contributions to scholarly knowledge about notable theoretical concerns, puzzles or controversies in any subfield of political science.