{"title":"A canonical prototype for coupled-resonator filters with frequency-dependent couplings","authors":"S. Tamiazzo, G. Macchiarella","doi":"10.1109/MWSYM.2016.7540060","DOIUrl":null,"url":null,"abstract":"We present in this paper a novel canonical folded prototype circuit with some couplings varying linearly with the normalized frequency. The derivation of this prototype is based on a suitable transformation of an asymmetric lattice network, generated through a sequence of matrix rotations of the coupling matrix of the folded canonical prototype. It is shown that the lattice network is a generalization of the canonical cul-de-sac form, which is obtained when the reflection zeros are all imaginary. We have also verified that the cul-de-sac forms are possible only when the reflection zeros are all imaginary (or in para-conjugate pairs). The lattice network (or the one with frequency-dependent couplings) represents a possible alternative to the cul-de-sac forms in the synthesis of star-junction multiplexers, when the synthesized filters exhibits complex reflection zeros.","PeriodicalId":6554,"journal":{"name":"2016 IEEE MTT-S International Microwave Symposium (IMS)","volume":"20 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2016.7540060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present in this paper a novel canonical folded prototype circuit with some couplings varying linearly with the normalized frequency. The derivation of this prototype is based on a suitable transformation of an asymmetric lattice network, generated through a sequence of matrix rotations of the coupling matrix of the folded canonical prototype. It is shown that the lattice network is a generalization of the canonical cul-de-sac form, which is obtained when the reflection zeros are all imaginary. We have also verified that the cul-de-sac forms are possible only when the reflection zeros are all imaginary (or in para-conjugate pairs). The lattice network (or the one with frequency-dependent couplings) represents a possible alternative to the cul-de-sac forms in the synthesis of star-junction multiplexers, when the synthesized filters exhibits complex reflection zeros.