HIERARCHICAL STRUCTURE OF DENTAL DATA IN THE RANDOM EFFECTS INCLUSION APPROACH

T. P. D. S. Suguiura, O. C. N. Pereira, Waenya Fernandez de Carvalho, I. Previdelli
{"title":"HIERARCHICAL STRUCTURE OF DENTAL DATA IN THE RANDOM EFFECTS INCLUSION APPROACH","authors":"T. P. D. S. Suguiura, O. C. N. Pereira, Waenya Fernandez de Carvalho, I. Previdelli","doi":"10.28951/RBB.V36I3.285","DOIUrl":null,"url":null,"abstract":"Data sets with complex structures is increasingly common in dental research. As consequences, statistical  methods to analyze and interpret these data must be efficient and robust. Hierarchical structures is one of  the most common kind of complex structures, and a proper approach is required. The multilevel modeling used to study hierarchical structures is a powerful tool which allows the collected data to be  analyzes in several levels. This study has as objective to make a literature review on multilevel linear models and to illustrate a three level model through a matrix procedure, without the use of specific software to estimate the parameters. With this model, we analyzed the vertical gingival retraction when using the substances: Naphazoline Chloridrate, Aluminium Chloride and without any substance. The intraclass correlation coefficient on dental level within patients showed that the hierarchical structure was important to accommodate the dependence within clusters.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/RBB.V36I3.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Data sets with complex structures is increasingly common in dental research. As consequences, statistical  methods to analyze and interpret these data must be efficient and robust. Hierarchical structures is one of  the most common kind of complex structures, and a proper approach is required. The multilevel modeling used to study hierarchical structures is a powerful tool which allows the collected data to be  analyzes in several levels. This study has as objective to make a literature review on multilevel linear models and to illustrate a three level model through a matrix procedure, without the use of specific software to estimate the parameters. With this model, we analyzed the vertical gingival retraction when using the substances: Naphazoline Chloridrate, Aluminium Chloride and without any substance. The intraclass correlation coefficient on dental level within patients showed that the hierarchical structure was important to accommodate the dependence within clusters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机效应纳入方法中牙科数据的层次结构
具有复杂结构的数据集在牙科研究中越来越普遍。因此,分析和解释这些数据的统计方法必须是高效和稳健的。分层结构是复杂结构中最常见的一种,需要对其进行适当的处理。多层次建模是研究层次结构的有力工具,它允许对收集到的数据进行多层次分析。本研究的目的是对多水平线性模型进行文献综述,并通过矩阵程序说明一个三水平模型,而不使用特定的软件来估计参数。通过该模型,我们分析了使用氯化萘唑啉、氯化铝和不使用任何物质时的牙龈垂直后缩情况。患者牙水平的类内相关系数表明,层次结构对于适应集群内的依赖是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
期刊最新文献
CLUSTER ANALYSIS IDENTIFIES VARIABLES RELATED TO PROGNOSIS OF BREAST CANCER DISEASE UROCHLOA GRASS GROWTH AS A FUNCTION OF NITROGEN AND PHOSPHORUS FERTILIZATION BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES ANALYSIS OF COVID-19 CONTAMINATION AND DEATHS CASES IN BRAZIL ACCORDING TO THE NEWCOMB-BENFORD INCIDENCE AND LETHALITY OF COVID-19 CLUSTERS IN BRAZIL VIA CIRCULAR SCAN METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1