{"title":"Modeling data flow in socio-information networks: a risk estimation approach","authors":"Ting Wang, M. Srivatsa, D. Agrawal, Ling Liu","doi":"10.1145/1998441.1998458","DOIUrl":null,"url":null,"abstract":"Information leakage via the networks formed by subjects (e.g., Facebook, Twitter) and objects (e.g., blogosphere) - some of whom may be controlled by malicious insiders - often leads to unpredicted access control risks. While it may be impossible to precisely quantify information flows between two entities (e.g., two friends in a social network), this paper presents a first attempt towards leveraging recent advances in modeling socio-information networks to develop a statistical risk estimation paradigm for quantifying such insider threats. In the context of socio-information networks, our models estimate the following likelihoods: prior flow - has a subject $s$ acquired covert access to object o via the networks? posterior flow - if s is granted access to o, what is its impact on information flows between subject s' and object o'? network evolution - how will a newly created social relationship between s and s' influence current risk estimates? Our goal is not to prescribe a one-size-fits-all solution; instead we develop a set of composable network-centric risk estimation operators, with implementations configurable to concrete socio-information networks. The efficacy of our solutions is empirically evaluated using real-life datasets collected from the IBM SmallBlue project and Twitter.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"54 1","pages":"113-122"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1998441.1998458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Information leakage via the networks formed by subjects (e.g., Facebook, Twitter) and objects (e.g., blogosphere) - some of whom may be controlled by malicious insiders - often leads to unpredicted access control risks. While it may be impossible to precisely quantify information flows between two entities (e.g., two friends in a social network), this paper presents a first attempt towards leveraging recent advances in modeling socio-information networks to develop a statistical risk estimation paradigm for quantifying such insider threats. In the context of socio-information networks, our models estimate the following likelihoods: prior flow - has a subject $s$ acquired covert access to object o via the networks? posterior flow - if s is granted access to o, what is its impact on information flows between subject s' and object o'? network evolution - how will a newly created social relationship between s and s' influence current risk estimates? Our goal is not to prescribe a one-size-fits-all solution; instead we develop a set of composable network-centric risk estimation operators, with implementations configurable to concrete socio-information networks. The efficacy of our solutions is empirically evaluated using real-life datasets collected from the IBM SmallBlue project and Twitter.