{"title":"Bird Part Localization Using Exemplar-Based Models with Enforced Pose and Subcategory Consistency","authors":"Jiongxin Liu, P. Belhumeur","doi":"10.1109/ICCV.2013.313","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach for bird part localization, targeting fine-grained categories with wide variations in appearance due to different poses (including aspect and orientation) and subcategories. As it is challenging to represent such variations across a large set of diverse samples with tractable parametric models, we turn to individual exemplars. Specifically, we extend the exemplar-based models in [4] by enforcing pose and subcategory consistency at the parts. During training, we build pose-specific detectors scoring part poses across subcategories, and subcategory-specific detectors scoring part appearance across poses. At the testing stage, likely exemplars are matched to the image, suggesting part locations whose pose and subcategory consistency are well-supported by the image cues. From these hypotheses, part configuration can be predicted with very high accuracy. Experimental results demonstrate significant performance gains from our method on an extensive dataset: CUB-200-2011 [30], for both localization and classification tasks.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"178 1","pages":"2520-2527"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
In this paper, we propose a novel approach for bird part localization, targeting fine-grained categories with wide variations in appearance due to different poses (including aspect and orientation) and subcategories. As it is challenging to represent such variations across a large set of diverse samples with tractable parametric models, we turn to individual exemplars. Specifically, we extend the exemplar-based models in [4] by enforcing pose and subcategory consistency at the parts. During training, we build pose-specific detectors scoring part poses across subcategories, and subcategory-specific detectors scoring part appearance across poses. At the testing stage, likely exemplars are matched to the image, suggesting part locations whose pose and subcategory consistency are well-supported by the image cues. From these hypotheses, part configuration can be predicted with very high accuracy. Experimental results demonstrate significant performance gains from our method on an extensive dataset: CUB-200-2011 [30], for both localization and classification tasks.