Interference cancellation in multipath environment for mobile WiMAX Geo-location system

Ji-Won Park, Seung-Hun Song, T. Sung
{"title":"Interference cancellation in multipath environment for mobile WiMAX Geo-location system","authors":"Ji-Won Park, Seung-Hun Song, T. Sung","doi":"10.1109/PLANS.2010.5507265","DOIUrl":null,"url":null,"abstract":"In mobile WiMAX, geo-location is possible at the PSS (personal subscriber station) by using the preamble signals broadcasted by all the RAS (Radio Access Station) simultaneously. Using relative arrival times of signals, user location can be obtained by TDoA (Time Difference of Arrival) positioning. However, sufficient number of RAS should be detected to obtain the location in this method. Since mobile WiMAX system employs cellular network structure, the number of RAS that PSS can detect is limited due to low SNR and CCI (co-channel interference) by neighboring RAS. To detect sufficient number of RAS at the PSS, hearability should be enhanced by increasing SNR (signal to noise ratio) and SIR (signal to interference ratio), which can be achieved using long integration and interference cancellation. In multipath environment, however, interference cancellation does not remove the CCI completely. Therefore, multipath mitigation and interference cancellation method should be merged and solved together. In this paper, detection performance after interference cancellation is analyzed using mobile WiMAX geo-location system. Simulation results show that trilateration is possible in most area of the cell coverage after interference cancellation in multipath environment, except at the vicinity of the RAS.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"142 1","pages":"783-786"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2010.5507265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In mobile WiMAX, geo-location is possible at the PSS (personal subscriber station) by using the preamble signals broadcasted by all the RAS (Radio Access Station) simultaneously. Using relative arrival times of signals, user location can be obtained by TDoA (Time Difference of Arrival) positioning. However, sufficient number of RAS should be detected to obtain the location in this method. Since mobile WiMAX system employs cellular network structure, the number of RAS that PSS can detect is limited due to low SNR and CCI (co-channel interference) by neighboring RAS. To detect sufficient number of RAS at the PSS, hearability should be enhanced by increasing SNR (signal to noise ratio) and SIR (signal to interference ratio), which can be achieved using long integration and interference cancellation. In multipath environment, however, interference cancellation does not remove the CCI completely. Therefore, multipath mitigation and interference cancellation method should be merged and solved together. In this paper, detection performance after interference cancellation is analyzed using mobile WiMAX geo-location system. Simulation results show that trilateration is possible in most area of the cell coverage after interference cancellation in multipath environment, except at the vicinity of the RAS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动WiMAX地理定位系统多径环境下的干扰消除
在移动WiMAX中,通过使用所有RAS(无线接入站)同时广播的前置信号,可以在PSS(个人用户站)上进行地理定位。利用信号的相对到达时间,通过TDoA (Time Difference of arrival)定位获得用户位置。然而,在这种方法中,需要检测到足够数量的RAS才能获得位置。由于移动WiMAX系统采用蜂窝网络结构,由于低信噪比和相邻RAS的共信道干扰,PSS能够检测到的RAS数量有限。为了在PSS检测到足够数量的RAS,应该通过提高信噪比(SNR)和信干扰比(SIR)来增强可听性,这可以通过长积分和干扰消除来实现。然而,在多径环境下,干扰消除并不能完全消除CCI。因此,多径抑制和干扰消除方法应该融合在一起解决。本文分析了移动WiMAX地理定位系统在消除干扰后的检测性能。仿真结果表明,在多径环境下,除RAS附近外,干扰消除后的大部分小区都可以实现三边定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative Multicarrier Broadband Waveforms for Future GNSS Applications - A System Overview Inertial Navigation on Extremely Resource-Constrained Platforms: Methods, Opportunities and Challenges. Doppler Processing for Satellite Navigation Q-Learning Model Covariance Adaptation of Rao-Blackwellized Particle Filtering in Airborne Geomagnetic Navigation Research on multi-model adaptive hull deformation measurement algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1